To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three pro...To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.展开更多
Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS...Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.展开更多
This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gaug...This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
Tomato(Solanum lycopersicum)is a perishable fruit because of its fast water loss and susceptibility to pathogens in the post-harvest stage,which leads to huge economic losses every year.In this study,firstly from 19 t...Tomato(Solanum lycopersicum)is a perishable fruit because of its fast water loss and susceptibility to pathogens in the post-harvest stage,which leads to huge economic losses every year.In this study,firstly from 19 tomato cultivars,we screened out two cultivars,Riogrand and SalarF1,having long and short shelf-life spans,respectively.Secondly,shelf-life analysis was carried out for both cultivars at room temperature.Results exhibited that Riogrand showed higher firmness and less weight loss than SalarF1.The ethylene production was higher in SalarF1,compared with Riogrand during post-harvest storages.We performed transcriptomic analysis of both cultivars in different storage stages.We discovered 2913,2188,and 11,119 differentially expressed genes(DEGs)for three post-harvest stages(0,20,and 40 Days Post-Harvest(DPH)),respectively.These genes are enriched in ethylene biosynthesis and response,as well as cell wall-related genes.Ethylene response factor(ERF)ERF2 and ERF4 were highly expressed in SalarF1 with a short shelf life in 40 DPH,and the ethylene biosynthetic genes ACO1,ACO4,ACS6,and ACS2 were significantly upregulated in SalarF1.Regarding cell wall loosening and cell wall-related genes XTH3,XTH7,XTH23,1,3;1,4-β-D-Gluc-like,pGlcT1,Cellulase,PGH1,PL5,PL-like 1,PL-like 2 exhibited the highest levels of significance,being notably upregulated in the last stage of SalarF1.The quantitative real-time polymerase chain reaction(qRT-PCR)analysis validated these gene expressions,which is in line with the transcriptome analysis.The findings suggested that the extension of tomato fruit shelf life is mostly dependent on ethylene biosynthesis,signaling pathway genes,cell wall loosening,and cell wall-associated genes.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is ...Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.展开更多
The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that...The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.展开更多
Low temperature is the most common abiotic stress factors during the eggplant cultivation in solar greenhouses.Melatonin plays important roles in plant resistance to low temperature.However,the role of melatonin in re...Low temperature is the most common abiotic stress factors during the eggplant cultivation in solar greenhouses.Melatonin plays important roles in plant resistance to low temperature.However,the role of melatonin in regulating chilling tolerance and extending the preharvest shelf life of eggplant fruits is still unknown.In this study,we investigated the effects of exogenous melatonin on eggplant plants and fruits in response to low temperature.Under simulated low-temperature conditions,exogenous melatonin significantly relieved the chilling symptoms of seedlings by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and relative leakage rates.These reductions were caused by higher superoxide dismutase (SOD) and catalase (CAT) activities and increased endogenous polyamine and melatonin levels compared with those in untreated seedlings.Notably,the expression levels of SOD,CAT1/2,and polyamine synthesis genes (ADC and ODC) were also increased by 100μmol·L~(-1)melatonin,as well as those of genes involved in melatonin synthesis (TDC,T5H,SNAT,ASMT,and COMT) and cold regulation (COR1,CBFa/b,and ZAT2/6/12).To further investigate the effects of melatonin on eggplant leaves and fruits under natural low temperature conditions,100μmol·L~(-1)melatonin was sprayed on the functional leaves at three days before commodity maturation.Melatonin significantly alleviated chilling injury in the leaves and pericarp and extended the preharvest shelf life of the fruit by increasing the expression of COR1,CBF,ZAT2/6/12,and API5 and decreasing the expression of senescence-related genes (NCED1/2 and SAG12).Therefore,100μmol·L~(-1)melatonin improved chilling tolerance and fruit shelf life by upregulating ZAT2/6/12 to affect ROS-and senescence-related processes,which provides a reference for alleviating cold stress and extending the preharvest fruit shelf life in eggplant.展开更多
Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of gre...Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of great significance to the future petroleum and gas undertakings.Previous researchers were largely confined by either limitation of geological records,highly dependence on a singular method or low-precision dating techniques.Our study integrated heavy mineral assemblages,geochemical analyses and detrital zircon U-Pb dating to reconstruct multiple source-to-sink pathways,and to provide a better understanding on the provenance evolution for the upper Pinghu–lower Huagang depositions of the Xihu Depression.At least three major provenances have been confirmed and systematically investigated for their separate compositional features.The Hupijiao Uplift(or even farther northern area)was dominated by a major Paleoproterozoic population peaked at ca.1830 Ma along with minor Mesozoic clusters.The Haijiao Uplift to the west and the Yushan Low Uplift to the southwest,on the other hand,generate opposite U-Pb age spectra with apparently larger peaks of Indosinian and Yanshanian-aged zircons.To be noted,both Indosinian and Paleoproterozoic peaks are almost identical in proportion for the Haijiao Uplift.The overall sedimentary pattern of late Eocene-early Oligocene was featured by both spatial and temporal distinction.The Hupijiao Uplift was likely to cast limited impact during the late Eocene,whereas the broad southern Xihu Depression was transported by a large abundance of materials from the nearby Haijiao and Yushan Low Uplifts.The northern source substantially extended its influence to the farther south during the early Oligocene by delivering plentiful sediments of higher-degree metamorphic parent rocks.Combined with the proximal western and southwestern suppliers,the overall Xihu Depression was under control from both distant and local provenances.展开更多
The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attribut...The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.展开更多
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequen...The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.展开更多
The research on the biological ecology of the Prydz Bay-Amery Ice Shelf in East Antarctica is inadequate under the increasing threat from climate change,especially for Antarctic fish and krill.The Dynamic Bioclimatic ...The research on the biological ecology of the Prydz Bay-Amery Ice Shelf in East Antarctica is inadequate under the increasing threat from climate change,especially for Antarctic fish and krill.The Dynamic Bioclimatic Envelope Model(DBEM)has been widely used in predicting the variation of species distribution and abundance in ocean and land under climate change;it can quantify the spatiotemporal changes of multi population under different climate emission scenarios by identifying the environmental preferences of species.The species richness and geographical pattern of six Antarctic representative species around Prydz Bay-Amery ice shelf were studied under RCP 8.5 and RCP 2.6 emission scenarios from 1970 to 2060 using Geophysical Fluid Dynamics Laboratory(GFDL),Institut Pierre Simon Laplace(IPSL),and Max Planck Institute(MPI)earth system models.The results showed that the species richness decreased as a whole,and the latitude gradient moved to the pole.The reason is that ocean warming,sea ice melting,and human activities accelerate the distribution changes of species biogeographical pattern,and the habitat range of krill,silverfish,and other organisms is gradually limited,which further leads to the change of species composition and the decrease of biomass.It is obvious that priority should be given to Prydz Bay-Amery ice shelf in the planning of Marine Protected Areas(MPAs)in East Antarctica.展开更多
The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediment...The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.展开更多
The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object ...The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object of sea-ice interaction and plays a vital role in studying the relationship between the ice sheet/ice shelf and global warming.In this paper,high-resolution remote sensing image and ice penetration data were combined to extract the basal channel of the Pine Island Ice Shelf.The depth variation of Pine Island Ice Shelf in the recent 20 years was analyzed and discussed by using ICESat-1,ICESat-2,and IceBridge data.Combined with relevant marine meteorological elements(sea surface temperature,surface melting days,circumpolar deep water and wind)to analyze the basal channel changes,the redistribution of ocean heat is considered to be the most important factor affecting the evolution and development of the basal channel.展开更多
The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic comp...The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.展开更多
In recent decades,environmental changes in the Arctic have aroused widespread concern around the world.To better understand ecology issues such as ecosystem dynamics,the Arctic and the subarctic regions were integrate...In recent decades,environmental changes in the Arctic have aroused widespread concern around the world.To better understand ecology issues such as ecosystem dynamics,the Arctic and the subarctic regions were integrated as the“pan-Arctic”region.In this study,mesozooplankton were sampled from the Bering Sea shelf to the northern Chukchi Sea during the 10th Chinese National Arctic Research Expedition in 2019.Based on the species composition and abundance,three geographical communities were identified:the Bering Sea shelf community(BSS),the Bering Strait transitional community(BST),and the Chukchi Sea shelf community(CSS).The BSS was characterized by Bering Sea oceanic species such as Eucalanus bungii;the BST was mainly composed of the pan-Arctic distributed Calanus glacialis,meroplankton of benthos,and neritic species such as Centropages abdominalis;copepods,especially the copepodite of C.glacialis,were predominant in the CSS community.The BSS community structure was strongly affected by the inflow of Bering Shelf Water,while those of BST and CSS were determined by the recruitment of local species.The zooplankton community structure is influenced by both advection and environmental changes such as warming and a prolonged productivity period.Here,it was difficult to distinguish the changes induced by climate change from the effects of the Bering Sea Water.The key to solving this problem is the accumulation of comparable data,which requires continuous monitoring of key species such as C.glacialis and Calanus hyperboreus.展开更多
基金Supported by the National Key R&D Program of China(No.2021YFF0501202)the National Natural Science Foundation of China(Nos.12374428,42176191,U22A2012,12304507)+2 种基金the Guangdong Special Support Key Team Program(Nos.2019BT02H594,GML2021GD0810)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP232)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24lgqb006)。
文摘To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.
基金Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural ResourcesChengdu University of Technology:DGERA20231110。
文摘Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.
基金The National Key R&D Program of China under contract No.2022YFC3104805the National Natural Science Foundation of China under contract Nos 42276019,41706025 and 41976200+4 种基金the Innovation Team Plan for Universities in Guangdong Province under contract No.2019KCXTF021the First-class Discipline Plan of Guangdong Province under contract Nos 080503032101and 231420003the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.060302032106the Open Fund Project of Key Laboratory of Marine Environmental Information Technology(2019)Ministry of Natural Resources。
文摘This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20204)the“Wanjiang Scholar Program(Anhui Province)”.
文摘Tomato(Solanum lycopersicum)is a perishable fruit because of its fast water loss and susceptibility to pathogens in the post-harvest stage,which leads to huge economic losses every year.In this study,firstly from 19 tomato cultivars,we screened out two cultivars,Riogrand and SalarF1,having long and short shelf-life spans,respectively.Secondly,shelf-life analysis was carried out for both cultivars at room temperature.Results exhibited that Riogrand showed higher firmness and less weight loss than SalarF1.The ethylene production was higher in SalarF1,compared with Riogrand during post-harvest storages.We performed transcriptomic analysis of both cultivars in different storage stages.We discovered 2913,2188,and 11,119 differentially expressed genes(DEGs)for three post-harvest stages(0,20,and 40 Days Post-Harvest(DPH)),respectively.These genes are enriched in ethylene biosynthesis and response,as well as cell wall-related genes.Ethylene response factor(ERF)ERF2 and ERF4 were highly expressed in SalarF1 with a short shelf life in 40 DPH,and the ethylene biosynthetic genes ACO1,ACO4,ACS6,and ACS2 were significantly upregulated in SalarF1.Regarding cell wall loosening and cell wall-related genes XTH3,XTH7,XTH23,1,3;1,4-β-D-Gluc-like,pGlcT1,Cellulase,PGH1,PL5,PL-like 1,PL-like 2 exhibited the highest levels of significance,being notably upregulated in the last stage of SalarF1.The quantitative real-time polymerase chain reaction(qRT-PCR)analysis validated these gene expressions,which is in line with the transcriptome analysis.The findings suggested that the extension of tomato fruit shelf life is mostly dependent on ethylene biosynthesis,signaling pathway genes,cell wall loosening,and cell wall-associated genes.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.
基金supported by the Joint Foundation of the Ministry of Education(Grant No.8091B022123)the Water Science and Technology Project of Jiangsu Province(Grant No.2022023)+1 种基金the Project of the Key Technologies of Port Engineering Construction under Medium and Long Period Wave Conditions(Grant No.ZJ2015-1)the Open Funding from the Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Communications in 2023(Grant No.Yk223001-3).
文摘Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.
文摘The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.
基金Introduction of Talents for Scientific Research of State Key Laboratory of North China Crop Improvement and Regulation (Grant No.NCCIR2020RC-11)Hebei Fruit Vegetables Seed Industry Science and Technology Innovation Team Project (Grant No.21326309D)+2 种基金Vegetable Innovation Team Project of Hebei Modern Agricultural Industrial Technology System (Grant No.HBCT2018030203)Introduction of Talents for Scientific Research of Hebei Agriculture University (Grant No.YJ2020048)Basic Scientific Research Funds of Provincial Universities of Hebei Province (Grant No.KY2021056) for the provision of funds。
文摘Low temperature is the most common abiotic stress factors during the eggplant cultivation in solar greenhouses.Melatonin plays important roles in plant resistance to low temperature.However,the role of melatonin in regulating chilling tolerance and extending the preharvest shelf life of eggplant fruits is still unknown.In this study,we investigated the effects of exogenous melatonin on eggplant plants and fruits in response to low temperature.Under simulated low-temperature conditions,exogenous melatonin significantly relieved the chilling symptoms of seedlings by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and relative leakage rates.These reductions were caused by higher superoxide dismutase (SOD) and catalase (CAT) activities and increased endogenous polyamine and melatonin levels compared with those in untreated seedlings.Notably,the expression levels of SOD,CAT1/2,and polyamine synthesis genes (ADC and ODC) were also increased by 100μmol·L~(-1)melatonin,as well as those of genes involved in melatonin synthesis (TDC,T5H,SNAT,ASMT,and COMT) and cold regulation (COR1,CBFa/b,and ZAT2/6/12).To further investigate the effects of melatonin on eggplant leaves and fruits under natural low temperature conditions,100μmol·L~(-1)melatonin was sprayed on the functional leaves at three days before commodity maturation.Melatonin significantly alleviated chilling injury in the leaves and pericarp and extended the preharvest shelf life of the fruit by increasing the expression of COR1,CBF,ZAT2/6/12,and API5 and decreasing the expression of senescence-related genes (NCED1/2 and SAG12).Therefore,100μmol·L~(-1)melatonin improved chilling tolerance and fruit shelf life by upregulating ZAT2/6/12 to affect ROS-and senescence-related processes,which provides a reference for alleviating cold stress and extending the preharvest fruit shelf life in eggplant.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and U20A20100。
文摘Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of great significance to the future petroleum and gas undertakings.Previous researchers were largely confined by either limitation of geological records,highly dependence on a singular method or low-precision dating techniques.Our study integrated heavy mineral assemblages,geochemical analyses and detrital zircon U-Pb dating to reconstruct multiple source-to-sink pathways,and to provide a better understanding on the provenance evolution for the upper Pinghu–lower Huagang depositions of the Xihu Depression.At least three major provenances have been confirmed and systematically investigated for their separate compositional features.The Hupijiao Uplift(or even farther northern area)was dominated by a major Paleoproterozoic population peaked at ca.1830 Ma along with minor Mesozoic clusters.The Haijiao Uplift to the west and the Yushan Low Uplift to the southwest,on the other hand,generate opposite U-Pb age spectra with apparently larger peaks of Indosinian and Yanshanian-aged zircons.To be noted,both Indosinian and Paleoproterozoic peaks are almost identical in proportion for the Haijiao Uplift.The overall sedimentary pattern of late Eocene-early Oligocene was featured by both spatial and temporal distinction.The Hupijiao Uplift was likely to cast limited impact during the late Eocene,whereas the broad southern Xihu Depression was transported by a large abundance of materials from the nearby Haijiao and Yushan Low Uplifts.The northern source substantially extended its influence to the farther south during the early Oligocene by delivering plentiful sediments of higher-degree metamorphic parent rocks.Combined with the proximal western and southwestern suppliers,the overall Xihu Depression was under control from both distant and local provenances.
基金Supported by the China National Science and Technology Major Project(2016ZX05027-004)CNOOC(China)Science and Technology Projects(CNOOC-KJ 135,ZDXM 39 SH03).
文摘The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42075028 and 42222502)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302)
文摘The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.
基金Supported by the National Natural Science Foundation of China(No.42176234)the Chinese Arctic and Antarctic Creative Program(No.JDB20210211)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)。
文摘The research on the biological ecology of the Prydz Bay-Amery Ice Shelf in East Antarctica is inadequate under the increasing threat from climate change,especially for Antarctic fish and krill.The Dynamic Bioclimatic Envelope Model(DBEM)has been widely used in predicting the variation of species distribution and abundance in ocean and land under climate change;it can quantify the spatiotemporal changes of multi population under different climate emission scenarios by identifying the environmental preferences of species.The species richness and geographical pattern of six Antarctic representative species around Prydz Bay-Amery ice shelf were studied under RCP 8.5 and RCP 2.6 emission scenarios from 1970 to 2060 using Geophysical Fluid Dynamics Laboratory(GFDL),Institut Pierre Simon Laplace(IPSL),and Max Planck Institute(MPI)earth system models.The results showed that the species richness decreased as a whole,and the latitude gradient moved to the pole.The reason is that ocean warming,sea ice melting,and human activities accelerate the distribution changes of species biogeographical pattern,and the habitat range of krill,silverfish,and other organisms is gradually limited,which further leads to the change of species composition and the decrease of biomass.It is obvious that priority should be given to Prydz Bay-Amery ice shelf in the planning of Marine Protected Areas(MPAs)in East Antarctica.
基金The National Natural Science Foundation of China under contract Nos 42276084 and 42176078the Special survey items of the China Geological Survey under contract Nos DD20190205 and DD20221710。
文摘The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068the Independent Scientific Research Project of the State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing.
文摘The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object of sea-ice interaction and plays a vital role in studying the relationship between the ice sheet/ice shelf and global warming.In this paper,high-resolution remote sensing image and ice penetration data were combined to extract the basal channel of the Pine Island Ice Shelf.The depth variation of Pine Island Ice Shelf in the recent 20 years was analyzed and discussed by using ICESat-1,ICESat-2,and IceBridge data.Combined with relevant marine meteorological elements(sea surface temperature,surface melting days,circumpolar deep water and wind)to analyze the basal channel changes,the redistribution of ocean heat is considered to be the most important factor affecting the evolution and development of the basal channel.
基金The“Seven Year Action Plan”East China Sea Special Project of CNOOC under contract No.CNOOC-KJ 135 ZDXM39 SH02。
文摘The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.
基金This study was financially supported by the National Natural Science Foundation of China(Grant nos.41706217,42166228).
文摘In recent decades,environmental changes in the Arctic have aroused widespread concern around the world.To better understand ecology issues such as ecosystem dynamics,the Arctic and the subarctic regions were integrated as the“pan-Arctic”region.In this study,mesozooplankton were sampled from the Bering Sea shelf to the northern Chukchi Sea during the 10th Chinese National Arctic Research Expedition in 2019.Based on the species composition and abundance,three geographical communities were identified:the Bering Sea shelf community(BSS),the Bering Strait transitional community(BST),and the Chukchi Sea shelf community(CSS).The BSS was characterized by Bering Sea oceanic species such as Eucalanus bungii;the BST was mainly composed of the pan-Arctic distributed Calanus glacialis,meroplankton of benthos,and neritic species such as Centropages abdominalis;copepods,especially the copepodite of C.glacialis,were predominant in the CSS community.The BSS community structure was strongly affected by the inflow of Bering Shelf Water,while those of BST and CSS were determined by the recruitment of local species.The zooplankton community structure is influenced by both advection and environmental changes such as warming and a prolonged productivity period.Here,it was difficult to distinguish the changes induced by climate change from the effects of the Bering Sea Water.The key to solving this problem is the accumulation of comparable data,which requires continuous monitoring of key species such as C.glacialis and Calanus hyperboreus.