The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic mode...A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.展开更多
A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells....A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a flat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.展开更多
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m...The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.展开更多
A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l...A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to inv...The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to investigate the early short time transient responses of laminated composite cylindrical shells under impact load.By using the Laplace transformation and referring to the boundary conditions,the ray groups transmitting in the finite laminated cylindrical shells under the shock load are obtained and the transient response related to each ray group can be derived via FFT algorithm.From the numerical results,it is shown that the early short time transient accelerations of the laminated composite cylindrical shell under impact loads are very large.But the short time transient shear strain and displacement are very small.展开更多
According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especi...According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.展开更多
An exact analytical solution was presented for free vibration of composite shell structure-hermetic capsule. The basic equations on axisymmetric vibration were based on the Love classical thin shell theory and derived...An exact analytical solution was presented for free vibration of composite shell structure-hermetic capsule. The basic equations on axisymmetric vibration were based on the Love classical thin shell theory and derived for shells of revolution with arbitrary meridian shape. The conditions of the junction between the spherical and the cylindrical shell segments are given by the continuity of deformation and the equilibrium relations near the junction point. The mathematical model of problem is reduced to as an eigenvalue problem for a system of ordinary differential equations in two separate domains corresponding to the spherical and the cylindrical shell segments. By using Legendre and trigonometric functions, ex act and explicitly analytical solutions of the mode functions were constructed and the exact frequency equation were obtained. The implementation of Maple programme indicates that all calculations are simple and efficient in both the exact symbolic calculation and the numerical results of natural frequencies compare with the results using finite element methods and other numerical methods. As a benchmark, the exactly analytical solutions presented in this paper is valuable to examine the accuracy of various approximate methods.展开更多
Composite structures are often used in the aerospace industry due to the advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied i...Composite structures are often used in the aerospace industry due to the advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into the aircraft interior. The shell is immersed in an external fluid medium and contains internal fluid. Airflow in the external fluid medium moves with a constant velocity. An exact solution is obtained by simultaneously solving the first-order shear deformation theory (FSDT) of a laminated composite shell and the acoustic wave equations. Transmission losses (TL) obtained from numerical solutions are compared with those of other authors. The effects of structural properties and flight conditions on TL are studied for a range of values, especially, the Mach number, stack sequences, and the angle of warp. Additionally, comparisons of the transmission losses are made between the classical thin shell theory (CST) and FSDT for laminated composite and isotropic cylindrical shells.展开更多
Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were empl...Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.展开更多
In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the vari...In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the variational principle of moving boundary and the Griffith fracture criterion. The finite difference method is used to generate the postbuckling solutions of the delaminated cylindrical shells, and with these solutions, the values of the energy release rates are determined. In simulational examples, the effects of a wide range of parameters, such as delamination sizes and depths, boundary conditions, geometrical parameters, material properties and laminate stacking sequences on the energy release rates of axisymmetrical laminated cylindrical shells are intensively discussed.展开更多
Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite s...Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.展开更多
A metal-semiconductor composite with the interracial shells is investigated theoretically for the large linear mag- netoresistance effect of high doping Ag2+δ Se and Ag2+δ te materials. The magnetoresistance (MR...A metal-semiconductor composite with the interracial shells is investigated theoretically for the large linear mag- netoresistance effect of high doping Ag2+δ Se and Ag2+δ te materials. The magnetoresistance (MR) of composites is a function of the magnetic field, temperature, the conductivities of two phases without magnetic field, and the thickness and conductivity of the interracial shells. The MR increases with the increase of the magnetic field and with the decrease of temperature, and no saturation is found even under the high magnetic field. Moreover, it is interestingly found that the interracial shell is an important factor for the MR of the composites. The MR increases with the thickness and the conductivity of the interfacial shells. Lastly, the theoretical results on the MR are compared with the experimental data. It is found that the value of the MR of the composite with the interfacial shell is larger than that without the interfacial shell.展开更多
By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations an...By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.展开更多
The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner dia...The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金Project(51705537)supported by the National Natural Science Foundation of ChinaProject(2018JJ3661)+2 种基金supported by the Natural Science Foundation of Hunan Province of ChinaProject(ZZYJKT2018-11)supported by State Key Laboratory of High Performance Complex Manufacturing,China。
文摘A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.
文摘A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a flat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.
文摘The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.
基金Innovation Team Development Program of Ministry of Education of China (No. IRT0763)National Natural Science Foundation of China (No. 50205028).
文摘A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
基金supported by the National Basic Research Program of China(2011CB711102)the National Natural Science Foundation of China(10672017)
文摘The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to investigate the early short time transient responses of laminated composite cylindrical shells under impact load.By using the Laplace transformation and referring to the boundary conditions,the ray groups transmitting in the finite laminated cylindrical shells under the shock load are obtained and the transient response related to each ray group can be derived via FFT algorithm.From the numerical results,it is shown that the early short time transient accelerations of the laminated composite cylindrical shell under impact loads are very large.But the short time transient shear strain and displacement are very small.
文摘According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.
文摘An exact analytical solution was presented for free vibration of composite shell structure-hermetic capsule. The basic equations on axisymmetric vibration were based on the Love classical thin shell theory and derived for shells of revolution with arbitrary meridian shape. The conditions of the junction between the spherical and the cylindrical shell segments are given by the continuity of deformation and the equilibrium relations near the junction point. The mathematical model of problem is reduced to as an eigenvalue problem for a system of ordinary differential equations in two separate domains corresponding to the spherical and the cylindrical shell segments. By using Legendre and trigonometric functions, ex act and explicitly analytical solutions of the mode functions were constructed and the exact frequency equation were obtained. The implementation of Maple programme indicates that all calculations are simple and efficient in both the exact symbolic calculation and the numerical results of natural frequencies compare with the results using finite element methods and other numerical methods. As a benchmark, the exactly analytical solutions presented in this paper is valuable to examine the accuracy of various approximate methods.
文摘Composite structures are often used in the aerospace industry due to the advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into the aircraft interior. The shell is immersed in an external fluid medium and contains internal fluid. Airflow in the external fluid medium moves with a constant velocity. An exact solution is obtained by simultaneously solving the first-order shear deformation theory (FSDT) of a laminated composite shell and the acoustic wave equations. Transmission losses (TL) obtained from numerical solutions are compared with those of other authors. The effects of structural properties and flight conditions on TL are studied for a range of values, especially, the Mach number, stack sequences, and the angle of warp. Additionally, comparisons of the transmission losses are made between the classical thin shell theory (CST) and FSDT for laminated composite and isotropic cylindrical shells.
文摘Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.
基金The project supported by the National Natural Science Foundation of China(10572049)
文摘In this paper, the postbuckling governing equations and the analytical expression of the energy release rates associated with delamination growth in a compression-loaded cylindrical shell are derived by using the variational principle of moving boundary and the Griffith fracture criterion. The finite difference method is used to generate the postbuckling solutions of the delaminated cylindrical shells, and with these solutions, the values of the energy release rates are determined. In simulational examples, the effects of a wide range of parameters, such as delamination sizes and depths, boundary conditions, geometrical parameters, material properties and laminate stacking sequences on the energy release rates of axisymmetrical laminated cylindrical shells are intensively discussed.
文摘Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.
基金Supported by the China Postdoctoral Science Foundation under Grant No 2014MM551868the Science and Technology Development Guidance Program of Qingdao under Grant No KJZD-13-35-JCH
文摘A metal-semiconductor composite with the interracial shells is investigated theoretically for the large linear mag- netoresistance effect of high doping Ag2+δ Se and Ag2+δ te materials. The magnetoresistance (MR) of composites is a function of the magnetic field, temperature, the conductivities of two phases without magnetic field, and the thickness and conductivity of the interracial shells. The MR increases with the increase of the magnetic field and with the decrease of temperature, and no saturation is found even under the high magnetic field. Moreover, it is interestingly found that the interracial shell is an important factor for the MR of the composites. The MR increases with the thickness and the conductivity of the interfacial shells. Lastly, the theoretical results on the MR are compared with the experimental data. It is found that the value of the MR of the composite with the interfacial shell is larger than that without the interfacial shell.
文摘By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.
基金supported by the National Natural Science Foundation of China(Grant No.52271277)the Natural Science Foundation of Jiangsu Province(Grant.No.BK20211343)+1 种基金the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(Grant.No.GKZD010081)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant.No.SJCX22_1906).
文摘The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites.