Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to ...Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.展开更多
Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facili...Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.展开更多
Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the materi...Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.展开更多
A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most...A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.展开更多
By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations an...By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10172038).
文摘Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.
基金supported by "973" Program (No.2012CB619301 and 2011CB925600)the National Natural Science Foundations of China (No.61227009,61106008,61106118,90921002,and 60827004)+1 种基金the Natural Science Foundations of Fujian Provincethe fundamental research funds for the central universities (No.2011121042 and 2011121026)
文摘Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.
文摘Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.
文摘A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.
文摘By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.