The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co...The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.展开更多
Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verifie...Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.展开更多
The flow resistance of the inlet section of heat exchanger with longitudinal flow in shell side was studied with the distributed fluid flow method.Transverse velocity and longitudinal velocity were investigated,and th...The flow resistance of the inlet section of heat exchanger with longitudinal flow in shell side was studied with the distributed fluid flow method.Transverse velocity and longitudinal velocity were investigated,and the resistance coefficient of transverse flow was analyzed as well.Prediction was made for the flow resistance of inlet section based on a number of experiments and the corresponding equation was obtained.The deviation of the calculated results with the equation from the experiment data was less than 5%.展开更多
基金Supported by the National Basic Research Program of China ("973" Project) (Grant No. 2007CB206903)the National Natural Science Foundation of China (Grant No. 50721005)
文摘The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.
基金financially supported by the National Natural Science Foundation of China (Grant No. 21776263, No. 51006092, No. 51776190, No. 51476147)the Henan Province Science and Technology Breakthrough Plan of China (Grant No. 182102310022)the Applied Research Plan of Key Scientific Research Projects of Henan Province Higher Education of China (Grant No. 18A470001, No. 17A530006)
文摘Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.
文摘The flow resistance of the inlet section of heat exchanger with longitudinal flow in shell side was studied with the distributed fluid flow method.Transverse velocity and longitudinal velocity were investigated,and the resistance coefficient of transverse flow was analyzed as well.Prediction was made for the flow resistance of inlet section based on a number of experiments and the corresponding equation was obtained.The deviation of the calculated results with the equation from the experiment data was less than 5%.