期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Compressive Mechanical and Heat Conduction Properties of AlSi10Mg Gradient Metamaterials Fabricated via Laser Powder Bed Fusion
1
作者 Qidong Sun Geng Zhi +2 位作者 Sheng Zhou Ran Tao Junfeng Qi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期76-93,共18页
Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive ... Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components. 展开更多
关键词 Compressive mechanical properties Thermal conductivity Finite element analysis Gradient metamaterials Laser powder bed fusion
下载PDF
Multistable Mechanical Metamaterials:A Brief Review 被引量:4
2
作者 ZHANG Hang WU Jun +1 位作者 ZHANG Yihui FANG Daining 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期1-17,共17页
Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse ... Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials SELF-ASSEMBLY SNAP-THROUGH structured mechanism geometrical frustration
下载PDF
Architectural Design and Additive Manufacturing of Mechanical Metamaterials:A Review 被引量:4
3
作者 Chenxi Lu Mengting Hsieh +5 位作者 Zhifeng Huang Chi Zhang Yaojun Lin Qiang Shen Fei Chen Lianmeng Zhang 《Engineering》 SCIE EI CAS 2022年第10期44-63,共20页
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While... Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials. 展开更多
关键词 mechanical metamaterials Auxetic materials Architectural design Additive manufacturing
下载PDF
Auxetic mechanical metamaterials: from soft to stiff 被引量:3
4
作者 Xiang Li Weitao Peng +2 位作者 Wenwang Wu Jian Xiong Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期60-85,共26页
Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physic... Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand. 展开更多
关键词 AUXETIC mechanical metamaterial SOFT STIFF structural design
下载PDF
The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review 被引量:3
5
作者 Rui Xu Chuanqing Chen +4 位作者 Jiapeng Sun Yulong He Xin Li Ming-Hui Lu Yanfeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期416-452,共37页
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta... Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials bistable units mechanical properties design and manufacture
下载PDF
Mechanically tunable metamaterials terahertz dual-band bandstop filter 被引量:1
6
作者 胡放荣 胥欣 +2 位作者 李鹏 徐新龙 王月娥 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期183-187,共5页
We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high res... We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high resistance silicon substrate. The performance of the filter is simulated by finite-integration-time-domain(FITD) method. The sample is fabricated using a surface micromachining process and experimentally demonstrated using a THz time-domain-spectroscopy(TDS) system. The results show that, when the incident THz wave is polarized in y-axis, the filter has two intensive absorption peaks locating at 0.71 THz and 1.13 THz, respectively. The position of the high-frequency absorption peak and the amplitude of the low-frequency absorption peak can be simultaneously tuned by rotating the sample along its normal axis.The tunability of the high-frequency absorption peak is due to the shift of resonance frequency of two electrical dipoles,and that of the low-frequency absorption peak results from the effect of rotationally induced transparent. This tunable filter is very useful for switch, manipulation, and frequency selective detection of THz beam. 展开更多
关键词 metamaterials terahertz(THz) bandstop filter mechanically tunable rotationally induced transparent(RIT)
下载PDF
Mechanical Janus lattice with plug-switch orientation
7
作者 Yupei Zhang Jiawei Zhong +4 位作者 Zhengcai Zhao Ruiyu Bai Yanqi Yin Yang Yu Bo Li 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期23-26,共4页
In recent years,materials with asymmetric mechanical response properties(mechanical Janus materials)have been found possess numerous potential applications,i.e.shock absorption and vibration isolation.In this study,we... In recent years,materials with asymmetric mechanical response properties(mechanical Janus materials)have been found possess numerous potential applications,i.e.shock absorption and vibration isolation.In this study,we propose a novel mechanical Janus lattice whose asymmetric mechanical response can be switched in orientation by a plug.Through finite element analysis and experimental verification,this lattice exhibits asymmetric displacement responses to symmetric forces.Furthermore,with such a plug structure inside,individual lattices can switch the orientation of asymmetry and thus achieve reprogrammable design of a mechanical structure with chained lattices.The reprogrammable asymmetry of this material will offer multiple functions in design of mechanical metamaterials. 展开更多
关键词 JANUS Non-reciprocity PROGRAMMABILITY mechanical metamaterial
下载PDF
Design and mechanical properties analysis of a cellular Waterbomb origami structure
8
作者 Yongtao Bai Zhaoyu Wang Yu Shi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期193-202,共10页
Cellular structures are commonly used to design energy-absorbing structures,and origami structures are becominga prevalent method of cellular structure design.This paper proposes a foldable cellular structure based on... Cellular structures are commonly used to design energy-absorbing structures,and origami structures are becominga prevalent method of cellular structure design.This paper proposes a foldable cellular structure based on theWaterbomb origami pattern.The geometrical configuration of this structure is described.Quasi-static compressiontests of the origami tube cell of this cellular structure are conducted,and load-displacement relationship curvesare obtained.Numerical simulations are carried out to analyze the effects of aspect ratio,folding angle,thicknessand number of layers of origami tubes on initial peak force and specific energy absorption(SEA).Calculationformulas for initial peak force and SEA are obtained by the multiple linear regression method.The degree ofinfluence of each parameter on the mechanical properties of the single-layer tube cell is compared.The resultsshow that the cellular structure exhibits negative stiffness and periodic load-bearing capacity,as well as foldingangle has the most significant effect on the load-bearing and energy-absorbing capacity.By adjusting the designparameters,the stiffness,load-bearing capacity and energy absorption capacity of this cellular structure can beadjusted,which shows the programmable mechanical properties of this cellular structure.The foldability andthe smooth periodic load-bearing capacity give the structure potential for application as an energy-absorbing structure. 展开更多
关键词 Cellular structure Waterbomb origami mechanical metamaterial Numerical simulation Energy absorption
下载PDF
Modeling and analysis of gradient metamaterials for broad fusion bandgaps
9
作者 Changqi CAI Chenjie ZHU +4 位作者 Fengyi ZHANG Jiaojiao SUN Kai WANG Bo YAN Jiaxi ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1155-1170,共16页
A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are per... A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region. 展开更多
关键词 local resonance mechanism elastic metamaterial stiffness gradient bandgap fusion broadband wave attenuation
下载PDF
Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS_(2)metamaterials
10
作者 Yuwang Deng Qingli Zhou +2 位作者 Wanlin Liang Pujing Zhang Cunlin Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期248-254,共7页
A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could signifi... A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect,especially for the structure on the small permitivity substrate.Additionally,the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS_(2) layer.Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results,explicating the response behaviors originate from the coupling between MoS_(2) overlayer and the metastructure.Our results could provide a possibility for active control THz modulator and switchable device based on the MoS_(2) overlayer and advance the understanding of the coupling mechanism in hybrid structures. 展开更多
关键词 terahertz metamaterial MoS_(2) coupling mechanism switchable device
下载PDF
Tailoring mechanical properties of PμSL 3D-printed structures via size effect 被引量:4
11
作者 Wenqiang Zhang Haitao Ye +5 位作者 Xiaobin Feng Wenzhao Zhou Ke Cao Maoyuan Li Sufeng Fan Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期261-268,共8页
Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables th... Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications. 展开更多
关键词 3D printing projection micro-stereolithography(PμSL) size effect MICROFIBER mechanical properties microlattice metamaterial
下载PDF
Mechanical design and analysis of bio-inspired reentrant negative Poisson’s ratio metamaterials with rigid-flexible distinction 被引量:2
12
作者 Xinchun Zhang Junyu Wang +4 位作者 Qidong Sun Jingyang Li Sheng Zhou Junfeng Qi Ran Tao 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期1-20,共20页
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor... Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions. 展开更多
关键词 Re-entrant mechanical metamaterials negative poisson’s ratio enhanced stiffness rigid-flexible distinction energy absorption
原文传递
3D Object Detection with Attention:Shell-Based Modeling
13
作者 Xiaorui Zhang Ziquan Zhao +1 位作者 Wei Sun Qi Cui 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期537-550,共14页
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou... LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision. 展开更多
关键词 3D object detection autonomous driving point cloud shell-based modeling self-attention mechanism
下载PDF
Achieving ultra-large tensile strain in nanoscale Si mechanical metamaterials
14
作者 Yuheng Huang Kuibo Yin +3 位作者 Zijian Gao Binghui Li Meng Nie Litao Sun 《Science China Materials》 SCIE EI CAS CSCD 2024年第12期4040-4048,共9页
Compared with the inherent brittleness of bulk silicon(Si)at ambient temperature,the nanosized Si materials with very high strength,plasticity,and anelasticity due to size effect,are all well-documented.However,the ul... Compared with the inherent brittleness of bulk silicon(Si)at ambient temperature,the nanosized Si materials with very high strength,plasticity,and anelasticity due to size effect,are all well-documented.However,the ultimate stretchability of Si nanostructure has not yet been demonstrated due to the difficulties in experimental design.Herein,directly performing in-situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer,shaping and straining,we report the customized nanosized Si mechanical metamaterial which overcomes brittle limitations and achieves an ultra-large tensile strain of up to 95%using the maskless focused ion beam(FIB)technology.The unprecedented characteristic is achieved synergistically through FIB-induced size-softening effect and engineering modification of mechanical metamaterials,revealed through analyses of finite element analysis,atomic-scale transmission electron microscope characterization and molecular dynamics simulations.This work is not only instructive for tailoring the strength and deformation behavior of nanosized Si mechanical metamaterials or other bulk materials,but also of practical relevance to the application of Si nanomaterials in nanoelectromechanical system and nanoscale strain engineering. 展开更多
关键词 SI size effect mechanical metamaterial NANOSTRUCTURE tensile strain
原文传递
Design,fabrication,and characterization of hierarchical mechanical metamaterials
15
作者 Jian SONG Junfei YAN Bengang YI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第1期73-83,共11页
Natural mechanical materials,such as bamboo and bone,often exhibit superior specific mechanical properties due to their hierarchical porous architectures.Using the principle of hierarchy as inspiration can facilitate ... Natural mechanical materials,such as bamboo and bone,often exhibit superior specific mechanical properties due to their hierarchical porous architectures.Using the principle of hierarchy as inspiration can facilitate the development of hierarchical mechanical metamaterials(HMMs)across multiple length scales via 3D printing.In this work,we propose self-similar HMMs that combine octet-truss(OCT)architecture as the first and second orders,with cubic architecture as the third or more orders.These HMMs were fabricated using stereolithography 3D printing,with the length sizes ranging from approximately 200µm to the centimeter scale.The compressive stress–strain behaviors of HMMs exhibit a zigzag characteristic,and the toughness and energy absorption can be significantly enhanced by the hierarchical architecture.The compressive moduli are comparable to that of natural materials,and the strengths are superior to that of most polymer/metal foams,alumina hollow/carbon lattices,and other natural materials.Furthermore,the flexural stress–strain curves exhibit a nonlinear behavior,which can be attributed to the hierarchical architecture and local damage propagation.The relatively high mechanical properties can be attributed to the synergistic effect of the stretch-dominated OCT architecture and the bending-dominated cube architecture.Lastly,an ultralight HMM-integrated unmanned aerial vehicle(HMM-UAV)was successfully designed and printed.The HMM-UAV is~85%lighter than its bulk counterpart,remarkably extending the flight duration time(~53%).This work not only provides an effective design strategy for HMMs but also further expands the application benchmark of HMMs. 展开更多
关键词 3D printing mechanical metamaterials hierarchical architecture mechanical behavior unmanned aerial vehicle(UAV)
原文传递
Rubik’s cube as in-situ programmable matter and a reconfigurable mechanical metamaterial
16
作者 ZHU ShaoWei CHEN Huan +8 位作者 YANG XiaoQiang TAN Li JIN Shuai CHEN LiMing LIU Tao TAN XiaoJun WANG LianChao WANG Bing MUAMER Kadic 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第10期3221-3234,共14页
As part of the 4th industrial revolution,programmable mechanical metamaterials exhibit great application potential in flexible robotics,vibration control,and impact protection.However,maintaining a programmed state wi... As part of the 4th industrial revolution,programmable mechanical metamaterials exhibit great application potential in flexible robotics,vibration control,and impact protection.However,maintaining a programmed state without sustaining the external stimulus is often challenging and leads to additional energy consumption.Inspired by Rubik’s cube,we design and study an in-situ programmable and distribution-reconfigurable mechanical metamaterial(IPDR-MM).A matrix model is developed to model IPDR-MMs and describe their morphological transitions.Based on this model,the reinforcement learning method is employed to find the pathways for morphological transitions.We find that IPDR-MMs have controllable stiffness across several orders of magnitude and a wide range of adjustable anisotropies through morphology transformation.Additionally,because of the independence of the directions of morphology transformation and bearing,IPDR-MMs exhibit good stability in bearing and can readily achieve high stiffness.The Rubik’s cube-inspired design concept is also instructive for other deformable structures and metamaterials,and the current version of the proposal should be sufficiently illustrative to attract and broaden interdisciplinary interests. 展开更多
关键词 mechanical metamaterials in-situ programmable distribution-reconfigurable Rubik’s cube controllable stiffness and anisotropy
原文传递
On-chip higher-order topological micromechanical metamaterials 被引量:4
17
作者 Ying Wu Mou Yan +3 位作者 Zhi-Kang Lin Hai-Xiao Wang Feng Li Jian-Hua Jiang 《Science Bulletin》 SCIE EI CSCD 2021年第19期1959-1966,M0003,共9页
Metamaterials with higher-order topological band gaps that exhibit topological physics beyond the bulkedge correspondence provide unique application values due to their ability of integrating topological boundary stat... Metamaterials with higher-order topological band gaps that exhibit topological physics beyond the bulkedge correspondence provide unique application values due to their ability of integrating topological boundary states at multiple dimensions in a single chip.On the other hand,in the past decade,micromechanical metamaterials are developing rapidly for various applications such as micro-piezoelectricgenerators,intelligent micro-systems,on-chip sensing and self-powered micro-systems.To empower these cutting-edge applications with topological manipulations of elastic waves,higher-order topological mechanical systems working at high frequencies(MHz)with high quality-factors are demanded.The current realizations of higher-order topological mechanical systems,however,are still limited to systems with large scales(centimetres)and low frequencies(k Hz).Here,we report the first experimental realization of an on-chip micromechanical metamaterial as the higher-order topological insulator for elastic waves at MHz.The higher-order topological phononic band gap is induced by the band inversion at the Brillouin zone corner which is achieved by configuring the orientations of the elliptic pillars etched on the silicon chip.With consistent experiments,theory and simulations,we demonstrate the emergence of coexisting topological edge and corner states in a single silicon chip as induced by the higher-order band topology.The experimental realization of on-chip micromechanical metamaterials with higherorder topology opens a new regime for materials and applications based on topological elastic waves. 展开更多
关键词 Higher-order band topology Micromechanical metamaterials On-chip devices mechanical waves
原文传递
Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial 被引量:1
18
作者 Long-Hui He Lian-Wen Deng +4 位作者 Heng Luo Jun He Yu-Han Li Yun-Chao Xu Sheng-Xiang Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期487-492,共6页
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the ba... The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology. 展开更多
关键词 polyurethane foam absorber metamateriAL broadband microwave absorption mechanism
下载PDF
Developing Mechanical Metamaterials Under an Adaptable Topology Optimization Design Framework
19
作者 Zhengtong Han Kai Wei +3 位作者 Xiaoyang Liu Yuhang Long Jialong Li Xinglin Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第2期306-316,共11页
Developing mechanical metamaterials through topology optimization attracts high attention in both computational design and engineering applications.However,most of the studies in the literature are of quite limited ap... Developing mechanical metamaterials through topology optimization attracts high attention in both computational design and engineering applications.However,most of the studies in the literature are of quite limited applicability and poor extensibility.Hence,this work originally established an adaptable metamaterial topology optimization framework through integrating a commercial finite element analysis(FEA)platform.Particularly,the sensitivity analysis was derived and simplified to avoid the complex extraction of internal FEA information according to the strain-energy-based homogenization method.A series of two-and three-dimensional metamaterials with different properties,i.e.,bulk and shear moduli,negative Poisson’s ratio,were subsequently devised.These optimized metamaterials were fabricated and experimentally tested based on the additive manufacturing,firmly demonstrating the effectiveness of the developed design framework.This well-structured design framework can be conveniently extended to the systematic design of metamaterials with various other exclusive performances,fulfilling the urgent need for metamaterial design methods. 展开更多
关键词 metamateriAL Topology optimization mechanical properties Tensile experiments
原文传递
基于多保真度神经网络的超材料力学性能预测
20
作者 邱荣英 李钼石 刘钊 《机械制造》 2024年第4期32-37,共6页
超材料是具有特殊机械性能的工程结构材料,可以通过设计单胞结构,定制超材料的力学性能。提出一种基于多保真度神经网络的超材料力学性能预测方法,采用拉丁超立方采样与物理试验、有限元分析等方法,构建包含两个保真度数据集的初始数据... 超材料是具有特殊机械性能的工程结构材料,可以通过设计单胞结构,定制超材料的力学性能。提出一种基于多保真度神经网络的超材料力学性能预测方法,采用拉丁超立方采样与物理试验、有限元分析等方法,构建包含两个保真度数据集的初始数据库。基于低保真度数据集,训练获得低保真度神经网络。冻结低保真度神经网络的通用特征层,对特定特征层基于高保真度数据集进行重训练,获得多保真度神经网络。将待预测结构件作为多保真度神经网络的输入,多保真度神经网络的输出即为预测得到的超材料力学性能。研究表明,所提出的方法预测精度与效率显著优于传统方法,为超材料的优化设计奠定了基础。 展开更多
关键词 超材料 神经网络 力学性能 预测
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部