期刊文献+
共找到2,881篇文章
< 1 2 145 >
每页显示 20 50 100
Effect of Flow Directions on Multiphase Flow Boiling Heat Transfer Enhanced by Suspending Particles in a Circulating Evaporation System 被引量:4
1
作者 Feng Jiang Teng Jiang +1 位作者 Guopeng Qi Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第3期201-213,共13页
A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental invest... A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux. 展开更多
关键词 heat transfer enhancement CIRCULATING fluidized BED EVAPORATOR FLOW direction DOWN-FLOW BED UP-FLOW BED Horizontal BED
下载PDF
Experimental Studies of the Enhanced Heat Transfer from a Heating Vertical Flat Plate by Ionic Wind 被引量:1
2
作者 岳永刚 侯俊平 +2 位作者 艾忠良 杨兰均 张乔根 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第6期697-700,共4页
The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge ... The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge (DBD) and dc glow discharge. The heat transfer coefficients for the heated copperplate under free convection conditions with and without an ionic wind are obtained by measuring the temperature and the heating power of the copper plate. It has been proved that the convective heat transfer coefficients increase by several times with the help of the ionic wind. With the ionic wind induced by a uniform dc glow discharge, the heat transfer coefficient of the heated copper plate is highly enhanced compared with those induced by a corona discharge or DBD. With the use of DBD, the breakdown voltage is increased significantly, which is helpful in avoiding a breakdown when heat transfer is enhanced by the ionic wind. In addition, it makes the application of the ionic wind much safer. 展开更多
关键词 enhanced heat transfer heat transfer enhancement ionic wind corona discharge DBD dc glow discharge
下载PDF
Study of steam heat transfer enhanced by CO_(2) and chemical agents: In heavy oil production 被引量:2
3
作者 Ya-Li Liu Chao Zhang +1 位作者 Song-Yan Li Zhao-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1030-1043,共14页
Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted... Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique. 展开更多
关键词 Steam flooding Heavy oil Carbon dioxide Chemical agent enhanced oil recovery(EOR) heat transfer
下载PDF
ENHANCED HEAT TRANSFER OF GLASS TUBE HEAT EXCHANGER
4
作者 高青 卓宁 马其良 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第2期44-52,共9页
The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments we... The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments were conducted,and thetlon have been obtained.Performance evaluations Nr the enhanced heattrans比r In this heatexchanger are su门niii ed up and discussed Based on the vlewp01nt Of止berinodynaffi1CS,止he avaHableenergy lossof the heat transfer swtern Inside the tube Is analwed to determine and evaluate the over-all趴ct oQthe enhanced heat transfer,The mechanism ofenhanced heat transfer]n the glass tubeand the Influence of turbutlvlty In the fough tube are also analysed and discussed. 展开更多
关键词 glass TUBE heat EXCHANGER enhanced heat transfer THERMODYNAMIC analysis
下载PDF
Enhanced Pool Boiling Heat Transfer on Copper Foam Welded Surfaces
5
作者 HU Zhuoyang CUI Enhua +3 位作者 KHAN Muhammad Niaz ZHANG Qian CHEN Xuefeng JI Keju 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期32-41,共10页
Enhanced pool boiling heat transfer of the porous structure is critical to the thermal management technology.In this paper,pool boiling heat transfer experiments are performed on copper foam welded surfaces in de-ioni... Enhanced pool boiling heat transfer of the porous structure is critical to the thermal management technology.In this paper,pool boiling heat transfer experiments are performed on copper foam welded surfaces in de-ionized water to investigate the effects of basic parameters of copper foam on heat transfer enhancement.Boiling phenomenon is observed to facilitate the understanding of enhancement mechanism.The results show that copper foam welded surfaces can significantly enhance the pool boiling heat transfer performance,reduce the boiling incipience temperature by 7-9℃,and reach two times heat transfer coefficient compared with smooth plain surfaces due to numerous nucleation sites,extended surface areas,and enhanced turbulent effect.Pore density and thickness of foam have two side effects on heat transfer. 展开更多
关键词 copper foam porous surface enhanced heat transfer pool boiling
下载PDF
Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins
6
作者 李永星 杨冬 陈听宽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期385-390,共6页
Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger w... Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s, the heal transfer rate ranged from 21.8 to47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8 ℃. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are DrODosed based on the experimental results. 展开更多
关键词 haeat exchanger rectangular finned-tube enhanced heat transfer friction factor
下载PDF
Analysis of secondary flow in shell-side channel of trisection helix heat exchangers 被引量:3
7
作者 王伟晗 陈亚平 +1 位作者 操瑞兵 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期426-430,共5页
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i... The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger. 展开更多
关键词 trisection helix heat exchangers secondary flow Dean vortices heat transfer enhancement flow field analysis
下载PDF
Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger
8
作者 陈亚平 梅娜 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期81-85,共5页
A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor... A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields. 展开更多
关键词 heat transfer enhancement strip-coil-baffle tube-shell heat exchanger vortex flow numerical simulation
下载PDF
Filmwise Condensation Heat Transfer Enhancement with Dropwise and Filmwise Coexisting Condensation Surfaces 被引量:4
9
作者 马学虎 王补宣 +1 位作者 徐敦颀 林纪方 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第2期5-12,共8页
Six surfaces were prepared with defferent surface division patterns for the experimental investigationof steam condensation heat transfer characteristics for dropwise and filmwise coexisting(DFC)condensationsurfaces u... Six surfaces were prepared with defferent surface division patterns for the experimental investigationof steam condensation heat transfer characteristics for dropwise and filmwise coexisting(DFC)condensationsurfaces under atmospheric pressure Dropwise condensation(DWC)was promoted with an ultrathin polytetrafluoroethylene(PTFE)film,which was prepared by the dynamic ion-beam mixed implantation(DIMI)method.The results showed that the condensation phenomena at the intersection between the dropwise andfilmwise condensation regios were quite different for different relative positions of the dropwise and filmwisecondensation regions.The experimental results revealed that the condensation heat transfer characteristics werehighly influenced by the surface division number and the relative area ratio of the dropwise and filmwise conden-sation regions.The impact of thesc findings on heat transfer enhancement mechanism for condensation heattransfer is discussed in detail. 展开更多
关键词 dropwise and filmwise coexisting CONDENSATION heat transfer enhancement polymer FILM
下载PDF
Enhancement of natural convection heat transfer from a fin by triangular perforation of bases parallel and toward its tip 被引量:3
10
作者 Abdullah H.AlEssa Mohamad I.Al-Widyan 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1033-1044,共12页
This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissi... This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered are geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation dimensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased. 展开更多
关键词 finned surfaces heat transfer enhancement triangular perforations natural convection finite element perforated fin heat dissipation
下载PDF
Heat Transfer Enhancement with Mixing Vane Spacers Using the Field Synergy Principle 被引量:3
11
作者 YANG Lixin ZHOU Mengjun TIAN Zihao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期127-134,共8页
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a s... The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod btmdle, and even prevented heat transfer at a blending angle of 50%. This fmding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes. 展开更多
关键词 rod bundle mixing vane heat transfer enhancement field synergy
下载PDF
Experimental and Numerical Study on Heat Transfer Enhancement of a Rectangular Channel with Discontinuous Crossed Ribs and Grooves 被引量:4
12
作者 唐新宜 朱冬生 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期220-230,共11页
Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investiga... Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement. 展开更多
关键词 heat transfer enhancement rib GROOVE rectangular channel turbulent flow
下载PDF
xperimental Study of Heat Transfer Enhancement and Friction Loss Induced by Inserted Rotor-assembled Strand (I) Water 被引量:4
13
作者 谢鹏程 李锋祥 +3 位作者 丁玉梅 阎华 关昌峰 杨卫民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期849-855,共7页
The single-phase pressure drop and heat transfer in a rotor-assembled strand inserted tube were measured using water as the working fluid.Experiment using a smooth tube was carried out to calibrate the experimental sy... The single-phase pressure drop and heat transfer in a rotor-assembled strand inserted tube were measured using water as the working fluid.Experiment using a smooth tube was carried out to calibrate the experimental system and the data reduction method.In the experiment,fixed mounts were used to eliminate the entrance effect. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers,although it does not significantly affect the Nusselt numbers.The measured data of inserted tube reveal that rotor-assembled strand can significantly improve heat transfer with the Nusselt number increased by 101.6%-106.6%and the overall heat transfer coefficient increased by 58.1%-67.4%within the Reynolds number range of 20000 to 36000.Meanwhile,friction factor increases by 52.2%-84.2%within the same Reynolds number range.The correlations of Nusselt number and friction factor as function of the Reynolds number and Prandtl number were determined through multivariant linear normal regression. 展开更多
关键词 heat transfer enhancement rotor-assembled strand friction factor DEPENDENCY
下载PDF
3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes 被引量:4
14
作者 洪宇翔 邓先和 张连山 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期589-601,共13页
The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes... The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu^d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate. 展开更多
关键词 heat transfer enhancement converging-diverging tube twisted tape numerical simulation
下载PDF
Enhancement of Flow Boiling Heat Transfer with Surfactant 被引量:3
15
作者 QIU Yun-ren CHEN Wei-ping SI Qin 《Journal of Central South University》 SCIE EI CAS 2000年第4期219-222,共4页
The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and... The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and heat flux etc. on flow boiling heat transfer were investigated. In order to analyze the mechanism of enhancement on boiling heat transfer with ODA, the copper surface was detected by XPS, and the diagram of binding energy was obtained. The results show that ODA can be adsorbed on the surface of the copper wall, and affects the properties of the heating surfaces and enhances the flow boiling heat transfer of water. Only in low heat flux and in a suitable range of concentration, can ODA aqueous solution enhance flow boiling heat transfer, and the suitable mass fraction of ODA is in the range of 1×10 -5 5×10 -5 . In addition, compared with water, ODA aqueous solution does not increase the flow drag under the same experimental conditions. 展开更多
关键词 flow boiling heat transfer flow drag enhancEMENT ADDITIVE
下载PDF
Passive heat transfer enhancement of laminar mixed convection flow in a vertical dimpled tube 被引量:3
16
作者 M.TOOFANI SHAHRAKI A.LAVAJOO A.BEHZADMEHR 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3477-3490,共14页
Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube wa... Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important. 展开更多
关键词 dimpled tube laminar mixed convection vertical tube heat transfer enhancement
下载PDF
Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow 被引量:23
17
作者 Siavashi Majid Jamali Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1850-1865,共16页
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ... Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds. 展开更多
关键词 nanofluid heat transfer enhancement forced convection entropy generation annulus radius ratio
下载PDF
Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube 被引量:3
18
作者 Wen-Tao Li Xian-Ke Meng +1 位作者 Hao-Zhi Bian Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期55-68,共14页
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans... In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%. 展开更多
关键词 Air–steam condensation Numerical simulation heat transfer enhancement Fin tube
下载PDF
Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow 被引量:2
19
作者 李国能 郑友取 +1 位作者 胡桂林 张治国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第5期489-495,共7页
Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the... Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface. 展开更多
关键词 impinging jet cross flow convection heat transfer heat transfer enhancement
下载PDF
Heat transfer enhancement of finned shell and tube heat exchanger using Fe_(2)O_(3)/water nanofluid 被引量:2
20
作者 AFSHARI Faraz SÖZEN Adnan +1 位作者 KHANLARI Ataollah TUNCER Azim Doğuş 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3297-3309,共13页
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra... Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%. 展开更多
关键词 heat transfer enhancement NANOFLUID shell and tube heat exchanger Fe_(2)O_(3)
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部