Simplified equations are derived for the analysis of stress concentration for shear-deformable shallow shells with a small hole. General solutions of the equations are obtained, in terms of series, for shallow spheric...Simplified equations are derived for the analysis of stress concentration for shear-deformable shallow shells with a small hole. General solutions of the equations are obtained, in terms of series, for shallow spherical shells and shallow circular cylindrical shells with a small circular hole. Approximate explicit solutions and numerical results are obtianed for the stress concentration factors of shallow circular cylindrical shells with a small hole on which uniform pressure is acting.展开更多
The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solutio...The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solution of the axisymrnetric snap-throughbuckling of laminated orthotropic shallow spherical shells under uniform pressure is obtained using orthogonal collocation method. The effects of material parameters, structuralparameters, initial imperfection and transverse shear deformation are discussed.展开更多
In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,th...In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,the dynamic response of spherical shells under axisymmetric dynamic load is calculated using the finite difference method The effects of material parameters.structural parameters and transverse shear dgformation are discussed.展开更多
This paper presents the stress resultants of hyperbolic paraboloidal shells using higher order shear deformation theory recently developed by Zannon [1]-[3]. The equilibrium equations of motion use Hamilton’s minimum...This paper presents the stress resultants of hyperbolic paraboloidal shells using higher order shear deformation theory recently developed by Zannon [1]-[3]. The equilibrium equations of motion use Hamilton’s minimum energy principle for a simply supported cross-ply structure by Zannon (TSDTZ) [2] [3]. The results are calculated for orthotropic, two-ply unsymmetrical [90/0] shells. The extensional, bending and coupling stiffness parameters are calculated using MATLAB algorithm for laminated composite hyperbolic paraboloidal shells. A comparison of the present study with other researchers in the literature is given, and is in good agreement.展开更多
Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysi...Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.展开更多
文摘Simplified equations are derived for the analysis of stress concentration for shear-deformable shallow shells with a small hole. General solutions of the equations are obtained, in terms of series, for shallow spherical shells and shallow circular cylindrical shells with a small circular hole. Approximate explicit solutions and numerical results are obtianed for the stress concentration factors of shallow circular cylindrical shells with a small hole on which uniform pressure is acting.
文摘The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solution of the axisymrnetric snap-throughbuckling of laminated orthotropic shallow spherical shells under uniform pressure is obtained using orthogonal collocation method. The effects of material parameters, structuralparameters, initial imperfection and transverse shear deformation are discussed.
文摘In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,the dynamic response of spherical shells under axisymmetric dynamic load is calculated using the finite difference method The effects of material parameters.structural parameters and transverse shear dgformation are discussed.
文摘This paper presents the stress resultants of hyperbolic paraboloidal shells using higher order shear deformation theory recently developed by Zannon [1]-[3]. The equilibrium equations of motion use Hamilton’s minimum energy principle for a simply supported cross-ply structure by Zannon (TSDTZ) [2] [3]. The results are calculated for orthotropic, two-ply unsymmetrical [90/0] shells. The extensional, bending and coupling stiffness parameters are calculated using MATLAB algorithm for laminated composite hyperbolic paraboloidal shells. A comparison of the present study with other researchers in the literature is given, and is in good agreement.
基金the Natural Science Foundation of Hunan Province (Grant No. 05JJ3008)the National Natural Science Foundation of China (Grant No. 10572049)
文摘Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.