期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Petrogenesis of basaltic shergottite NWA 8656 被引量:1
1
作者 Ting Cao Qi He ZhuQing Xue 《Earth and Planetary Physics》 2018年第5期384-397,共14页
Most basaltic shergottites are too Mg-rich to represent parent melt compositions because they contain some cumulus pyroxenes. However, basaltic shergottite Northwest Africa(NWA) 8656 with subophitic texture can be use... Most basaltic shergottites are too Mg-rich to represent parent melt compositions because they contain some cumulus pyroxenes. However, basaltic shergottite Northwest Africa(NWA) 8656 with subophitic texture can be used as the parent melt composition in petrogenetic studies because it contains no or rare cumulus pyroxenes. Its pyroxene cores(Mg# 66-68, the most magnesian) are in equilibrium with the bulk rock composition based on major(Fe-Mg) and trace elements(REE—rare earth elements).The patchy zoning of pyroxenes has been interpreted as reflecting a two-stage crystallization history: 1) crystallization of Mg-rich pyroxene cores at depth(50 km, the base of Martian crust), 2) crystallization of Fe-rich pyroxene rims at the shallow depth near the Martian surface with a fast cooling history. The crystallization of Fe-rich pyroxenes and the existence of different symplectites indicate that NWA 8656 underwent eruption. The oxygen fugacity of NWA 8656(QFM –0.9±0.5) suggests an oxidized condition at the late-stage crystallization process, and the CI-normalized REE patterns of different minerals show enrichment in LREE, compared to that of depleted shergottites. Both of these observations suggest a relatively ITE(incompatible trace elements)-enriched signature of NWA 8656, similar to those of other enriched shergottites. The REE compositions of augite core and rim and plagioclase can be successfully reproduced by progressive crystallization without exogenous components, which indicates a closed magmatic system for NWA 8656. Consequently, we conclude that the ITE-enriched signature of NWA 8656 is inherited from an enriched mantle source rather than caused by crustal assimilation. Moreover, partial melting of depleted Martian mantle could not directly yield magmas that have geochemical characteristics similar to enriched shergottite parent magmas, so the enriched and depleted shergottites are derived from distinct mantle sources, and the mantle source of enriched shergottites would be expected to contain ilmenite. 展开更多
关键词 basaltic shergottites patchy zoning ITE-enriched closed-system distinct mantle sources
下载PDF
A New Martian Meteorite from Antarctica:Grove Mountains (GRV) 020090 被引量:24
2
作者 MIAOBingkui OUYANGZiyuan +3 位作者 WANGDaode JUYitai WANGGuiqin LINYangting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第5期1034-1041,共8页
Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered b... Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars. 展开更多
关键词 METEORITE LHERZOLITE shergottite achondrite Mars ANTARCTICA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部