When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc...When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling.展开更多
This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of ...This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.展开更多
基金The support provided by the National Natural Science Foundation of Youth Fund Project of China(Grant No.52308415)Key Research and Development Program of Hubei Province,China(Grant No.2021BCA154)Natural Science Foundation of Hubei Province,China(Grant No.2021CFA081)is gratefully acknowledged.
文摘When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling.
文摘This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.