期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Determination of minimum overburden depth for underwater shield tunnel in sands:Comparison between circular and rectangular tunnels 被引量:3
1
作者 Weixin Sun Fucheng Han +4 位作者 Hanlong Liu Wengang Zhang Yanmei Zhang Weijia Su Songlin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1671-1686,共16页
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ... With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation. 展开更多
关键词 Minimum overburden depth Uplift resistance mechanism shield tunnel shape Tunnel anti-floating
下载PDF
Full-scale experiment for segmental linings of deep-buried shield tunnels bearing high inner water pressure:Comparison of mechanical behaviors of continuous-and stagger-jointed structures 被引量:3
2
作者 Long Zhou Yi Shen +3 位作者 Linxing Guan Zhiguo Yan Wei Sun Yaoliang Li 《Underground Space》 SCIE EI CSCD 2023年第1期252-266,共15页
Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical pr... Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied. 展开更多
关键词 shield tunnel Inner water pressure Continuous-jointed lining Stagger-jointed lining Full-scale experiment
原文传递
Weakening behavior of waterproof performance in joints of shield tunnels under adjacent constructions
3
作者 Huai-Na WU Lei LIU +4 位作者 Yuan LIU Ren-Peng CHEN Hai-Lin WANG Shi-Qiang RUAN Meng FAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第6期884-900,共17页
Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading ... Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance. 展开更多
关键词 shield tunnel waterproof performance horizontal transverse deformation joint opening weakenning behavior
原文传递
Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield tunnels
4
作者 Xiaojing GAO Pengfei LI +3 位作者 Mingju ZHANG Haifeng WANG Zenghui LIU Ziqi JIA 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第6期901-914,共14页
The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints.This study focuses on the mechanical characteristics and mechanism of a bolted... The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints.This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process.Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load.A height adjustment coefficient,α,for the outer concrete compression zone is introduced into a simplified analytical model.Factors affectingαare determined,and the degree of influence of these factors is investigated via orthogonal numerical simulations.The numerical results show thatαcan be specified as approximately 0.2 for most metro shield tunnels in China.Subsequently,a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments.Using the proposed simplified analytical algorithms,a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint.The method for optimizing the joint flexural stiffness is clarified.The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels. 展开更多
关键词 shield tunnel segment joint joint structural model failure mechanism
原文传递
Novel numerical model to simulate water seepage through segmental gasketed joints of underwater shield tunnels considering the superimposed seepage squeezing effect
5
作者 Qixiang Yan Haojia Zhong +3 位作者 Chuan Zhang Zechang Zhao Yanxin Wen Ping Wang 《Underground Space》 SCIE EI CSCD 2023年第6期104-120,共17页
The water leakage through segmental joint gaskets has become a major concern that adversely affects the normal serviceability of underwater shield tunnels throughout the construction and operational periods.Therefore,... The water leakage through segmental joint gaskets has become a major concern that adversely affects the normal serviceability of underwater shield tunnels throughout the construction and operational periods.Therefore,it is of great significance to investigate the sealing performances of the joint gaskets,which directly helps evaluate the waterproof capacity of underwater shield tunnels.To date,the numerical modeling plays an irreplaceable role in the analysis on the waterproof capacity of the joint gaskets.Nevertheless,conventional methods tend to ignore the self-sealing effect induced by the water seepage pressurization,thus failing to reveal the progressive evolution of the water infiltration process through the joint gasket.To remedy this defect,this paper proposed a novel numerical model to simulate the penetration process of the sealing gasket based on the Python language-enabled secondary programming in the ABAQUS software,which could fully consider the superimposed seepage squeezing effect.Based on the proposed model,the waterproof failure process and the dynamic contact stress of the gasket’s water seepage path subject to excessive hydraulic pressure were thoroughly investigated.Moreover,indoor tests on the waterproof capacity of the gasket were also performed to validate the proposed model.It is found that the numerical results from the developed model are consistent with the experimental results.This research will contribute to better understanding of the gaskets’hydraulic penetration process and more accurate prediction of the maximum waterproof capacity in underwater shield tunnels. 展开更多
关键词 Underwater shield tunnel Hydraulic pressure Gasketed joint Water leakage Sealing performance Finite element method
原文传递
Predictions of ground surface settlement for shield tunnels in sandy cobble stratum based on stochastic medium theory and empirical formulas
6
作者 Fan Wang Xiuli Du Pengfei Li 《Underground Space》 SCIE EI CSCD 2023年第4期189-203,共15页
This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is ... This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement. 展开更多
关键词 shield tunnelling Sandy cobble stratum Ground surface settlement Stochastic medium theory Empirical formulas
原文传递
Ground settlement and tunnel response due to twin-curved shield tunnelling in soft ground with small clear distance
7
作者 Yao Hu Haoran Tang +4 位作者 Yinggang Xu Huayang Lei Peng Zeng Kai Yao Yabo Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3122-3135,共14页
Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-... Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-curved shield tunnelling in soft ground were investigated using numerical simulation and field monitoring.Different curvature radii of twin curved tunnels and subsequent effects of tunnel construction were considered to reveal the tunnelling effect on ground surface settlement and tunnel deformation.The results show that the settlement trough yields one offset towards inside of curved shield tunnelling.The location of settlement trough and maximum settlement were affected by curvature radius but except for the shape and width of settlement trough.Adjacent parallel twin-curved shield tunnelling could increase the offset of existing settlement trough and maximum settlement.Then,an empirical prediction of surface settlement trough due to twin-curved shield tunnelling with same tunnel diameters in soft clay was proposed,which was applicable to curvature radius less than 800 m.Finally,a minimum radius of 600 m of curvature tunnel was proposed in terms of allowable convergence deformation of tunnel.The result could provide guidance on safety evaluation for twin curved shield tunnelling construction. 展开更多
关键词 shield tunnelling Curvature radius Ground settlement Tunnel deformation Numerical simulation
下载PDF
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
8
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum
9
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
Research on the design method for uniform wear of shield cutters in sand-pebble strata
10
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
Experimental study on effect of ductile-iron panel stiffness on mechanical properties of segmental joints of shield tunnels 被引量:2
11
作者 Long Zhou Zhiguo Yan +1 位作者 Yi Shen Linxing Guan 《Underground Space》 SCIE EI 2022年第6期1056-1067,共12页
In circular shield tunnels bearing high inner pressure or rectangular shaped shield tunnels,as the axial force at the segmental lining decreases,the bolt load at the segmental joint increases.It is essential to adopt ... In circular shield tunnels bearing high inner pressure or rectangular shaped shield tunnels,as the axial force at the segmental lining decreases,the bolt load at the segmental joint increases.It is essential to adopt high-stiffness segmental joints to improve the bearing capacity and control the deformation at the joint position.When designing high-stiffness segmental joints,the selection of ductileiron joint panel is crucial.In this study,two types of segmental joints with different joint panels were fabricated,and the effects of joint panel stiffness on the mechanical properties of segmental joints were analyzed through full-scale sagging and hogging bending tests.The results showed that the failure mode of high-stiffness segmental joint was similar to that of large eccentric compression section.According to the difference of panel stiffness,the failure modes can be specified into two types.If the stiffness is sufficient,the joint failure occurs due to the yielding of bolts;otherwise,it occurs due to the large deformation of ductile-iron joint panels.As for the design requirement of segmental joint,the stiffness of joint panel should be sufficient,i.e.,the opening and failure of the joints are finally induced by the bolt deformation.Otherwise,before the plastic deformation of the bolts,the large deformation of the joint panels will occur under a bendingmoment-dominant load,and the bearing capacity of the joints will greatly decrease. 展开更多
关键词 Ductile-iron joint panel High-stiffness segmental joint shield tunnel Experimental study
原文传递
Observed response of maglev structure undercrossed by three shield tunnels in soft soil 被引量:1
12
作者 Dong-Mei Zhang Xiao-Chuang Xie +2 位作者 Zhong-Kai Huang Mao-Zhu Peng Hong-Xin Zhu 《Underground Space》 SCIE EI 2022年第4期636-661,共26页
This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,t... This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,thus the deformations of the maglev structure are strictly controlled for the serviceability of the operating maglev trains.The displacements of maglev piers and ground settlements during different tunnelling stages are monitored with an automatic measuring system.Based on the observed data,the ground settlement trough and displacements of maglev piers caused by the three shield tunnelling procedures are analyzed and discussed.The maximal ground settlement after the completion of the three tunnelling procedures is -43 mm.To operate the existing maglev safely,practical construction control methods are applied,including synchronous grouting,adjustment of the shield status,shield-advancing speed control,and stabilisation of the soil chamber pressure.With these countermeasures,the tunnel-induced deformations of maglev piers are well below the predefined thresholds.All piers heave under the strict deformation criterion of 2.0 mm.The crossing project is finally completed without interruptions of the maglev operations by monitoring the progress.The presented project is a valuable example for the evaluation of shield tunnelling effects on the adjacent maglev structures and establishes criteria for similar projects in the future. 展开更多
关键词 MAGLEV Multi-crossing shield tunnelling Ground settlement Pier displacement
原文传递
On the critical particle size of soil with clogging potential in shield tunneling 被引量:3
13
作者 Shuying Wang Zihao Zhou +3 位作者 Pengfei Liu Zhao Yang Qiujing Pan Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期477-485,共9页
Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils shou... Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling. 展开更多
关键词 shield tunneling Soil clogging ADHESION Critical particle size
下载PDF
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation 被引量:1
14
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 shield tunnel segment Full-scale test Asymmetric unloading Stress and deformation Safety index
下载PDF
Effects of deep soil mixing on existing shield tunnels in soft soil ground
15
作者 Huangsong Pan Liyuan Tong +1 位作者 Zhansheng Wang Tao Yang 《Underground Space》 SCIE EI 2022年第4期724-733,共10页
To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause th... To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause the movement of existing shield tunnels under soft soil and sensitive ground conditions,and reasonable installation parameters will reduce the impact of DSM construction on the existing shield tunnels.Based on the field tests of DSM installation parameters and a program of field measurements of existing shield tunnels during the DSM construction in Suzhou,the reasonable installation parameters of DSM were selected,and the movement of soil behind the soil mixing walls(SMWs)during multirow DSM installation was investigated.The movement of the shield tunnels caused by DSM construction were discussed in detail.The field test results showed that the DSM columns installed at a higher speed and a lower water-cement ratio enlarged the movement of the surrounding soil.The DSM should be installed at a lower speed and a higher watercement ratio to reduce the movement of the shield tunnels.The field measurement results showed that the displacement of the tunnel lining was primarily caused by the construction of DSM zones beside the shield tunnels,which led to vertical compression and horizontal expansion of the tunnel lining.The construction of DSM immediately above the shield tunnels caused uplift to the tunnels.In addition,the deformed shapes of the two shield tunnels were asymmetric,and the displacement of the spring lining was larger than that of the crown.By taking the reasonable installation parameters of DSM and under the protection of the SMWs,the deformation of the shield tunnels caused by the construction of DSM was effectively controlled,and the maximum displacement was within the control value of the shield tunnels in this study. 展开更多
关键词 Deep soil mixing Soft soil shield tunnel Field tests Field measurement
原文传递
Analytical solution for longitudinal deformation of shield tunnel induced by overcrossing tunnelling considering circumferential joints
16
作者 Zhiwei Zhang Rongzhu Liang +4 位作者 Zhongchao Li Cheng Kang MHEl Naggar Mingzhao Xiao Wenbing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2355-2374,共20页
This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal be... This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal beam-spring model(SLBSM)is established to model the longitudinal behaviours of shield tunnel,which can consider the opening and dislocation between segmental rings simultaneously.Then,the existing tunnel is treated as the SLBSM resting on the elastic foundation.The state equations including tunnel displacements and internal forces are constructed to solve the discontinuous deformation of circumferential joint-segmental ring.The feasibility of the proposed solution is verified through three well-documented cases.The predictions from the proposed method are also compared with other analytical methods.It is found that the proposed method can well capture the deformation of tunnel segmental rings and joints,where the rigid displacement mainly occurs in the segmental rings while the rotation and dislocation occur in the circumferential joints.Some dominant parameters are also analysed to explore the effects on existing tunnel deformation,including the rotation stiffness and shearing stiffness of joints,the skew angle and the clearance between new and old tunnels. 展开更多
关键词 Overcrossing tunnelling shield tunnel Circumferential joints Longitudinal beam-spring model(LBSM) Opening DISLOCATION
下载PDF
Dynamic response analysis of liquefiable ground due to sinusoidal waves of different frequencies of shield construction
17
作者 Wang Jingyue Ge Xinsheng +4 位作者 Sun Jingyuan Liu Yasheng Shang Zhuo Wang Zhiqiang Tian Maoguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期637-646,共10页
Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequenci... Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine. 展开更多
关键词 shield tunnel liquefiable formation FLAC3D numerical simulation excess pore pressure ratio dynamic response analysis
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:14
18
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life shield tunneling Operational parameters GMDH-GA
下载PDF
Machine learning-based automatic control of tunneling posture of shield machine 被引量:9
19
作者 Hongwei Huang Jiaqi Chang +3 位作者 Dongming Zhang Jie Zhang Huiming Wu Gang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1153-1164,共12页
For a tunnel driven by a shield machine,the posture of the driving machine is essential to the construction quality and environmental impact.However,the machine posture is controlled by the experienced driver of shiel... For a tunnel driven by a shield machine,the posture of the driving machine is essential to the construction quality and environmental impact.However,the machine posture is controlled by the experienced driver of shield machine by setting hundreds of tunneling parameters empirically.Machine learning(ML)algorithm is an alternative method that can let the computer to learn from the driver’s operation and try to model the relationship between parameters automatically.Thus,in this paper,three ML algorithms,i.e.multi-layer perception(MLP),support vector machine(SVM)and gradient boosting regression(GBR),are improved by genetic algorithm(GA)and principal component analysis(PCA)to predict the tunneling posture of the shield machine.A set of the parameters for shield tunneling is extracted from the construction site of a Shanghai metro.In total,53,785 pairwise data points are collected for about 373 d and the ratio between training set,validation set and test set is 3:1:1.Each pairwise data point includes 83 types of parameters covering the shield posture,construction parameters,and soil stratum properties at the same time.The test results show that the averaged R2 of MLP,SVM and GBR based models are 0.942,0.935 and 0.6,respectively.Then the automatic control for the posture of shield tunnel is illustrated with an application example of the proposed models.The proposed method is proved to be helpful in controlling the construction quality with optimized construction parameters. 展开更多
关键词 shield tunneling Machine learning(ML) Construction parameters Optimization
下载PDF
Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling 被引量:9
20
作者 Rohola Hasanpour Jürgen Schmitt +1 位作者 Yilmaz Ozcelik Jamal Rostami 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1112-1122,共11页
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM).... Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions. 展开更多
关键词 Single shielded tunnel boring machine(TBM) Numerical modeling shield jamming Squeezing ground Uluabat tunnel
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部