Gadolinium methacrylate(Gd(MAA)3) was synthesized by using gadolinium oxide and methacrylic acid as the starting materials and its self-polymerization kinetic was studied based on non-isothermal and isothermal ana...Gadolinium methacrylate(Gd(MAA)3) was synthesized by using gadolinium oxide and methacrylic acid as the starting materials and its self-polymerization kinetic was studied based on non-isothermal and isothermal analysis. Moreover, the monomer reactivity ratios of methyl methacrylate(MMA) and Gd(MAA)3 were evaluated by using Kelen-Tiidos method. The thermal neutron shielding properties of PMMA and poly(MMA-co-Gd(MAA)3) were calculated by MCNP program. The results show that the selfpolymerization of Gd(MAA)3 can be initiated by thermal and free radical and its activation energy is103.35 kJ/mol or 58.55 kJ/mol correspondingly in the solid state or aqueous solution. The polymerization rate,Rp,under low conversion at 65 ℃ is expressed as Rp = K[M]^(1.05)[I]^(0.60). The reactivity ratios of r1(MMA) and r2(Gd(MAA)3) are 0.225 and 1.340, respectively. The ability of thermal neutron shielding of poly(MMA-co-Gd(MAA)3) is increased by gadolinium contents and is far better than PMMA.展开更多
基金Project supported by Graduate Student Research Innovation Project(KYLX_1337)
文摘Gadolinium methacrylate(Gd(MAA)3) was synthesized by using gadolinium oxide and methacrylic acid as the starting materials and its self-polymerization kinetic was studied based on non-isothermal and isothermal analysis. Moreover, the monomer reactivity ratios of methyl methacrylate(MMA) and Gd(MAA)3 were evaluated by using Kelen-Tiidos method. The thermal neutron shielding properties of PMMA and poly(MMA-co-Gd(MAA)3) were calculated by MCNP program. The results show that the selfpolymerization of Gd(MAA)3 can be initiated by thermal and free radical and its activation energy is103.35 kJ/mol or 58.55 kJ/mol correspondingly in the solid state or aqueous solution. The polymerization rate,Rp,under low conversion at 65 ℃ is expressed as Rp = K[M]^(1.05)[I]^(0.60). The reactivity ratios of r1(MMA) and r2(Gd(MAA)3) are 0.225 and 1.340, respectively. The ability of thermal neutron shielding of poly(MMA-co-Gd(MAA)3) is increased by gadolinium contents and is far better than PMMA.