With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of ...With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.展开更多
The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability...The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability of the device. The calculation was based on the optimization technique (step by step) and the modeling of individual parts of the device, namely MEMS-keys that perform the main function--switching. The urgency of this problem is the development and study of one device as a universal, that is, automatically switches from two signals simultaneously. Designs are original and devises are the intellectual property of the authors. The program for modeling phase shifters Computer Simulation Technology Microwave Studio and its results are presented in the paper.展开更多
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ...This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.展开更多
This paper presents a systematic investigation and demonstration of a K-band circularly polarized liquidcrystal-based phased array(LCPA),including the design,over-the-air(OTA)in-array calibration,and experimental vali...This paper presents a systematic investigation and demonstration of a K-band circularly polarized liquidcrystal-based phased array(LCPA),including the design,over-the-air(OTA)in-array calibration,and experimental validation.The LCPA contains 16 phase-shifting radiating channels,each consisting of a circularly polarized stacked patch antenna and a liquid-crystal-based phase shifter(LCPS)based on a loaded differential line structure.Thanks to its slow-wave properties,the LCPS exhibits a maximum phase-shifting range of more than 360°with a figure of merit of 78.3(°)·dB^(-1)based on a liquid crystal layer with a thickness of only 5μm.Furthermore,an automatic OTA calibration based on a state ergodic method is proposed,which enables the extraction of the phase-voltage curve of every individual LCPA channel.The proposed LCPA is manufactured and characterized with a total profile of only 1.76 mm,experimentally demonstrating a scanned circularly polarized beam from-40°to+40°with a measured peak gain of 12.5 dBic and a scanning loss of less than 2.5 dB.The bandwidth of the LCPA,which satisfies the require-ments of port reflection(|S_(11)|)<-15 dB,an axial ratio(AR)<3 dB,beam squinting<3°,and a gain variation<2.2 dB,spans from 25.5 to 26.0 GHz.The total efficiency is about 34%,which represents a new state of the art.The use of the demonstrated low-profile LCPA to support circularly polarized scanning beams,along with the systematic design and calibration methodology,holds potential promise for a variety of millimeter-wave applications.展开更多
Silicon photonic platforms offer relevance to large markets in many applications,such as optical phased arrays,photonic neural networks,programmable photonic integrated circuits,and quantum computation devices.As one ...Silicon photonic platforms offer relevance to large markets in many applications,such as optical phased arrays,photonic neural networks,programmable photonic integrated circuits,and quantum computation devices.As one of the basic tuning devices,the thermo-optic phase shifter(TOPS)plays an important role in all these applications.A TOPS with the merits of easy fabrication,low power consumption,small thermal time constant,low insertion loss,small footprint,and low crosstalk,is needed to improve the performance and lower the cost of the above applications.To meet these demands,various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper,we review the state-of-the-art of TOPS,including metal heater,doped silicon,silicide,with silicon substrate undercut for heat insulation,folded waveguide structure,and multi-pass waveguide structure.We further compare these TOPSs and propose the directions of the future developments on TOPS.展开更多
Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferomet...Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferometer (MZI) coupler to change the resonator from under-coupling to over-coupling, the device can realize a π phase shift on the incoming microwave signal with a frequency up to 25 GHz. The device can also realize 2.5π continuous phase tuning by manipulating the three DC bias voltages applied on the MZI coupler.展开更多
In this article,a single-layer symmetrical full-port quasi-absorptive filtering phase shifter is presented.The proposed phase shifter is composed of a main quasi-absorptive filtering branch,a reference quasi-absorptiv...In this article,a single-layer symmetrical full-port quasi-absorptive filtering phase shifter is presented.The proposed phase shifter is composed of a main quasi-absorptive filtering branch,a reference quasi-absorptive filtering branch,and two delay lines.The proposed phase shifter achieves both phase controlling function and quasi-absorptive filtering function for the first time.Each quasi-absorptive filtering branch can realize the quasi-absorptive filtering function.Meanwhile,the constant phase shift can be obtained by combining the two quasi-absorptive filtering branches and the two delay lines.The design formulas can be derived from the even-and odd-mode network analysis,and then two quasi-absorptive filtering phase shifters can be devised easily and quickly.For verification,a 90°quasi-absorptive filtering phase shifter,which is critical for circularly polarized antenna systems,is simulated,manufactured,and measured.展开更多
Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output system...Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.展开更多
The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the...The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.展开更多
The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireles...The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.展开更多
Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get informat...Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get information about the behavioral state of people(opinion) through reviews and comments. Numerous techniques have been aimed to analyze the sentiment of the text, however, they were unable to come up to the complexity of the sentiments. The complexity requires novel approach for deep analysis of sentiments for more accurate prediction. This research presents a three-step Sentiment Analysis and Prediction(SAP) solution of Text Trend through K-Nearest Neighbor(KNN). At first, sentences are transformed into tokens and stop words are removed. Secondly, polarity of the sentence, paragraph and text is calculated through contributing weighted words, intensity clauses and sentiment shifters. The resulting features extracted in this step played significant role to improve the results. Finally, the trend of the input text has been predicted using KNN classifier based on extracted features. The training and testing of the model has been performed on publically available datasets of twitter and movie reviews. Experiments results illustrated the satisfactory improvement as compared to existing solutions. In addition, GUI(Hello World) based text analysis framework has been designed to perform the text analytics.展开更多
A two-bit phase shifter with distributed microelectromechanical system (MEMS) transmission line (DMTL) is developed,and a novel structure which be actuated by coplanar waveguide transmission line (CPW-actuation struct...A two-bit phase shifter with distributed microelectromechanical system (MEMS) transmission line (DMTL) is developed,and a novel structure which be actuated by coplanar waveguide transmission line (CPW-actuation structure) is proposed,which can reduce the actuation voltage significantly.The measured result,with actuation voltage less than 20V,0°/20.1°/41.9°/68.2° phase shift and -1.2dB insert loss at 20GHz,is demonstrated,and insertion loss/return loss is better than -1.8dB/-11dB from DC to 32GHz.The experimental results highlight the potential of a low-loss and broadband digital MEMS phase shifter on a high-permittivity substrate.展开更多
Barium strontium titanate/magnesia (BSTO/MgO) ferroeleetric materials for phase shift were prepared by traditional ceramic process-solid phase synthesis. The effects of various rare earth oxides of 0.5 % on dielectr...Barium strontium titanate/magnesia (BSTO/MgO) ferroeleetric materials for phase shift were prepared by traditional ceramic process-solid phase synthesis. The effects of various rare earth oxides of 0.5 % on dielectric behaviors of BSTO/MgO composites were studied in terms of permittivity, loss tangent and tunability both at low and high frequencies. The dielectric constant of Y2O3 and Er2O3 doped samples decreases from 160 to 120, and the microwave loss of La2O3 and Er2O3 doped samples decreases from 8.2 x 10-3 to 6.8 x 10-3. Only La203 increases the tunability of BSTO/MgO system, from 13.6% to 14.8%. For the La2O3 doped sample, the value of tunability is more than 14% with the external DC field 4000 V·mm^-1 and the microwave loss at 2.47 GHz is 6.77 ×10^-3 and, hence, it can basically meet the requirements of phase shifters working at microwave frequencies. The influence mechanism was discussed preliminarily.展开更多
To implement the multi-way phase shifting maintaining the compact size and simplicity in structure,the uniform reference line concept was proposed for the differential phase shifter.However,the performance in bandwidt...To implement the multi-way phase shifting maintaining the compact size and simplicity in structure,the uniform reference line concept was proposed for the differential phase shifter.However,the performance in bandwidth and phase range deteriorates with the additional requirements considered.To solve this problem,a quarter wavelength coupled line section loaded with open/short stubs is proposed as the basic element to implement the main line and also reference line.According to the theoretical analysis on this basic element,the loading stubs can be used to control the phase shift and also the phase slope of the basic element without affecting the amplitude property.With the predetermined parameters of the uniform reference line,only two parameters are required for the implementation of different differential phase shifts.This demonstrates the high simplicity of the proposed structure.For demonstration,an eight-way differential phase shifter operating at 3.5 GHz was implemented using the vertically installed planar structure.The prototype was further fabricated and measured.Good agreement between simulation and measurement can be observed.The implemented phase shifter can provide a wide range of phase shifting values from 45°to 315°with reference to the uniform reference line over a relative bandwidth of 62.3%.展开更多
DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational powe...DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.展开更多
Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides ...Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.展开更多
A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the l...A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.展开更多
The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, w...The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0305200)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2018B030329001 and 2018B030325001)the National Natural Science Foundation of China(Grant No.61974168)。
文摘With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.
文摘The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability of the device. The calculation was based on the optimization technique (step by step) and the modeling of individual parts of the device, namely MEMS-keys that perform the main function--switching. The urgency of this problem is the development and study of one device as a universal, that is, automatically switches from two signals simultaneously. Designs are original and devises are the intellectual property of the authors. The program for modeling phase shifters Computer Simulation Technology Microwave Studio and its results are presented in the paper.
基金supported by the National Natural Science Foundation of China(Grant No.61971117)the Natural Science Foundation of Hebei Province(Grant No.F2020501007)the S&T Program of Hebei(No.22377717D)。
文摘This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.
基金supported in part by the National Natural Science Foundation of China(NSFC62122019 and 62293492)+2 种基金the National Key Research and Development Program of China(2019YFB2204704)the Fundamental Research Funds for the Central Universitiesthe Zhishan Scholar Program of Southeast University(2242022R40038).
文摘This paper presents a systematic investigation and demonstration of a K-band circularly polarized liquidcrystal-based phased array(LCPA),including the design,over-the-air(OTA)in-array calibration,and experimental validation.The LCPA contains 16 phase-shifting radiating channels,each consisting of a circularly polarized stacked patch antenna and a liquid-crystal-based phase shifter(LCPS)based on a loaded differential line structure.Thanks to its slow-wave properties,the LCPS exhibits a maximum phase-shifting range of more than 360°with a figure of merit of 78.3(°)·dB^(-1)based on a liquid crystal layer with a thickness of only 5μm.Furthermore,an automatic OTA calibration based on a state ergodic method is proposed,which enables the extraction of the phase-voltage curve of every individual LCPA channel.The proposed LCPA is manufactured and characterized with a total profile of only 1.76 mm,experimentally demonstrating a scanned circularly polarized beam from-40°to+40°with a measured peak gain of 12.5 dBic and a scanning loss of less than 2.5 dB.The bandwidth of the LCPA,which satisfies the require-ments of port reflection(|S_(11)|)<-15 dB,an axial ratio(AR)<3 dB,beam squinting<3°,and a gain variation<2.2 dB,spans from 25.5 to 26.0 GHz.The total efficiency is about 34%,which represents a new state of the art.The use of the demonstrated low-profile LCPA to support circularly polarized scanning beams,along with the systematic design and calibration methodology,holds potential promise for a variety of millimeter-wave applications.
基金This work was supported by Chuan-Yu Cooperation Project(No.Cstc2020jscx-cy1hX0006)Chongqing Science and Technology Commission of China(Grant No.cstc2020jscx-msxm0099 and cstc2020jscx-msxm0100)Chongqing Natural Science Foundation of China(No.cstc2020jcyj-msxm3725).
文摘Silicon photonic platforms offer relevance to large markets in many applications,such as optical phased arrays,photonic neural networks,programmable photonic integrated circuits,and quantum computation devices.As one of the basic tuning devices,the thermo-optic phase shifter(TOPS)plays an important role in all these applications.A TOPS with the merits of easy fabrication,low power consumption,small thermal time constant,low insertion loss,small footprint,and low crosstalk,is needed to improve the performance and lower the cost of the above applications.To meet these demands,various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper,we review the state-of-the-art of TOPS,including metal heater,doped silicon,silicide,with silicon substrate undercut for heat insulation,folded waveguide structure,and multi-pass waveguide structure.We further compare these TOPSs and propose the directions of the future developments on TOPS.
基金Acknowledgements This work was supported in part by the National High Technology Research and Development Program (863 Program) (No. 2013AA014402), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61422508), the Shanghai Rising-Star Program (No. 14QA 1402600), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of Ministry of Education of China (No. 20130073130005). We also acknowledge IME Singapore for device fabrication.
文摘Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferometer (MZI) coupler to change the resonator from under-coupling to over-coupling, the device can realize a π phase shift on the incoming microwave signal with a frequency up to 25 GHz. The device can also realize 2.5π continuous phase tuning by manipulating the three DC bias voltages applied on the MZI coupler.
基金supported by National Natural Science Foundations of China(No.U20A20203,No.61971052,U21A20510)the Fundamental Research Funds for the Central Universities(2021XDA07-1)Key Research and Development Project of Guangdong Province(2020B0101080001)。
文摘In this article,a single-layer symmetrical full-port quasi-absorptive filtering phase shifter is presented.The proposed phase shifter is composed of a main quasi-absorptive filtering branch,a reference quasi-absorptive filtering branch,and two delay lines.The proposed phase shifter achieves both phase controlling function and quasi-absorptive filtering function for the first time.Each quasi-absorptive filtering branch can realize the quasi-absorptive filtering function.Meanwhile,the constant phase shift can be obtained by combining the two quasi-absorptive filtering branches and the two delay lines.The design formulas can be derived from the even-and odd-mode network analysis,and then two quasi-absorptive filtering phase shifters can be devised easily and quickly.For verification,a 90°quasi-absorptive filtering phase shifter,which is critical for circularly polarized antenna systems,is simulated,manufactured,and measured.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects (2017ZX03001028)
文摘Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.
文摘The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.
文摘The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.
文摘Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get information about the behavioral state of people(opinion) through reviews and comments. Numerous techniques have been aimed to analyze the sentiment of the text, however, they were unable to come up to the complexity of the sentiments. The complexity requires novel approach for deep analysis of sentiments for more accurate prediction. This research presents a three-step Sentiment Analysis and Prediction(SAP) solution of Text Trend through K-Nearest Neighbor(KNN). At first, sentences are transformed into tokens and stop words are removed. Secondly, polarity of the sentence, paragraph and text is calculated through contributing weighted words, intensity clauses and sentiment shifters. The resulting features extracted in this step played significant role to improve the results. Finally, the trend of the input text has been predicted using KNN classifier based on extracted features. The training and testing of the model has been performed on publically available datasets of twitter and movie reviews. Experiments results illustrated the satisfactory improvement as compared to existing solutions. In addition, GUI(Hello World) based text analysis framework has been designed to perform the text analytics.
文摘A two-bit phase shifter with distributed microelectromechanical system (MEMS) transmission line (DMTL) is developed,and a novel structure which be actuated by coplanar waveguide transmission line (CPW-actuation structure) is proposed,which can reduce the actuation voltage significantly.The measured result,with actuation voltage less than 20V,0°/20.1°/41.9°/68.2° phase shift and -1.2dB insert loss at 20GHz,is demonstrated,and insertion loss/return loss is better than -1.8dB/-11dB from DC to 32GHz.The experimental results highlight the potential of a low-loss and broadband digital MEMS phase shifter on a high-permittivity substrate.
文摘Barium strontium titanate/magnesia (BSTO/MgO) ferroeleetric materials for phase shift were prepared by traditional ceramic process-solid phase synthesis. The effects of various rare earth oxides of 0.5 % on dielectric behaviors of BSTO/MgO composites were studied in terms of permittivity, loss tangent and tunability both at low and high frequencies. The dielectric constant of Y2O3 and Er2O3 doped samples decreases from 160 to 120, and the microwave loss of La2O3 and Er2O3 doped samples decreases from 8.2 x 10-3 to 6.8 x 10-3. Only La203 increases the tunability of BSTO/MgO system, from 13.6% to 14.8%. For the La2O3 doped sample, the value of tunability is more than 14% with the external DC field 4000 V·mm^-1 and the microwave loss at 2.47 GHz is 6.77 ×10^-3 and, hence, it can basically meet the requirements of phase shifters working at microwave frequencies. The influence mechanism was discussed preliminarily.
基金The work described in this paper was supported by the National Natural Science Foundation of China(No.62071503).
文摘To implement the multi-way phase shifting maintaining the compact size and simplicity in structure,the uniform reference line concept was proposed for the differential phase shifter.However,the performance in bandwidth and phase range deteriorates with the additional requirements considered.To solve this problem,a quarter wavelength coupled line section loaded with open/short stubs is proposed as the basic element to implement the main line and also reference line.According to the theoretical analysis on this basic element,the loading stubs can be used to control the phase shift and also the phase slope of the basic element without affecting the amplitude property.With the predetermined parameters of the uniform reference line,only two parameters are required for the implementation of different differential phase shifts.This demonstrates the high simplicity of the proposed structure.For demonstration,an eight-way differential phase shifter operating at 3.5 GHz was implemented using the vertically installed planar structure.The prototype was further fabricated and measured.Good agreement between simulation and measurement can be observed.The implemented phase shifter can provide a wide range of phase shifting values from 45°to 315°with reference to the uniform reference line over a relative bandwidth of 62.3%.
文摘DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012216)the National Natural Science Foundation of China(No.11505301)the Innovation Training Program for bachelor students at the School of Physics in SYSU
文摘Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.
基金the National Natural Science Foundation of China under Grants No.61927821 and No.61575037.
文摘A nonlinearity-compensation-free optical frequency domain reflectometry(OFDR)scheme is proposed and experimentally demonstrated based on the electrically-controlled optical frequency sweep.In the proposed scheme,the linear frequency sweep light is generated by propagating an ultra-narrow-linewidth continuous-wave(CW)light through an electro-optic frequency shifter which consists of a dual-parallel Mach-Zehnder modulator(DPMZM)and an electronic 90°hybrid,where the electro-optic frequency shifter is driven by a linear frequency modulated signal generated by a direct digital synthesizer(DDS).Experimental results show that the spatial resolution and signal-to-noise ratio(SNR)of the proposed OFDR scheme without the nonlinear phase compensation are comparable to those of OFDR employing a commercial tunable laser source(TLS),an auxiliary interferometer,and a software-based nonlinear phase compensation method.The proposed OFDR scheme is helpful to reduce the complexity of the optical structure and eliminate the difficulty of developing the nonlinear phase compensation algorithm.
基金Project supported by the Fundamental Research Funds for Central Universities,China(Grant No.XDJK2013B004)the Research Fund for the Doctoral Program of Southwest University,China(Grant No.SWU111030)the State Key Laboratory for Millimeter Waves of Southeast University,China(Grant No.K201312)
文摘The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.