In the past decade,ferroelectric materials have been intensively explored as promising photocatalysts.An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes,which is beli...In the past decade,ferroelectric materials have been intensively explored as promising photocatalysts.An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes,which is believed to arise from a spontaneous polarization.Understanding how polarization affects the photocatalytic performance is vital to design high-efficiency photocatalysts.In this work,we report a size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO_(3)/PbTiO_(3)nanoplate heterostructures for the first time.This was realized hydrothermally by controlling the thickness and thus spontaneous polarization strength of single-crystal and single-domain PbTiO_(3)nanoplates,which served as the substrate for selective heteroepitaxial growth of SrTiO_(3).An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of the nanoplate increases from 30 to 107 nm.A combined experimental investigation revealed that the incompletely compensated depolarization filed is the dominated driving force for the photogenerated carrier separation within heterostructures,and its increase with the thickness of the nanoplates accounts for the enhancement of photocatalytic activity.Moreover,the concentration of oxygen vacancies for negative polarization compensation has been found to grow as the thickness of the nanoplates increases,which promotes oxygen evolution reaction and reduces the stoichiometric ratio of H_(2)/O_(2).These findings may provide the opportunity to design and develop high-efficiency ferroelectric photocatalysts.展开更多
Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place ...Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place theory remains valid, and it seems there has been a reemergence with it. Using the Greater Pearl River Delta (Greater PRD) as an experimental study region, this paper intends to present an empirical study that validates central place theory and shows that it can be integrated into an overall regional urban system. The study uses the compound Central Place Importance (CPI) to evaluate whether there is a hierarchy among the urban centers within the study area. The results indicate the existence of a hierarchy. Furthermore, empirical observation finds distinct complementarity relationships, rank-size distributions, and co-operative actions between the different cities, thus substantiating the claim that central place theory can be incorporated into an overall regional urban system. Besides, the presence of the densely distributed modern infrastructure system also appears to constitute a dimension of the overall urban system. There need further theoretical and empirical studies in order to support this proposition.展开更多
基金supported by the National Key R&D Program of China(No.2021YFA1500800)the National Natural Science Foundation of China(Nos.52425201,52272129,and 12125407)+2 种基金the Natural Science Foundation of Zhejiang Province,China(No.LR21E020004)the ShanxiZheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-FR007)the Joint Funds of the National Natural Science Foundation of China(No.U21A2067).
文摘In the past decade,ferroelectric materials have been intensively explored as promising photocatalysts.An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes,which is believed to arise from a spontaneous polarization.Understanding how polarization affects the photocatalytic performance is vital to design high-efficiency photocatalysts.In this work,we report a size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO_(3)/PbTiO_(3)nanoplate heterostructures for the first time.This was realized hydrothermally by controlling the thickness and thus spontaneous polarization strength of single-crystal and single-domain PbTiO_(3)nanoplates,which served as the substrate for selective heteroepitaxial growth of SrTiO_(3).An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of the nanoplate increases from 30 to 107 nm.A combined experimental investigation revealed that the incompletely compensated depolarization filed is the dominated driving force for the photogenerated carrier separation within heterostructures,and its increase with the thickness of the nanoplates accounts for the enhancement of photocatalytic activity.Moreover,the concentration of oxygen vacancies for negative polarization compensation has been found to grow as the thickness of the nanoplates increases,which promotes oxygen evolution reaction and reduces the stoichiometric ratio of H_(2)/O_(2).These findings may provide the opportunity to design and develop high-efficiency ferroelectric photocatalysts.
文摘Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place theory remains valid, and it seems there has been a reemergence with it. Using the Greater Pearl River Delta (Greater PRD) as an experimental study region, this paper intends to present an empirical study that validates central place theory and shows that it can be integrated into an overall regional urban system. The study uses the compound Central Place Importance (CPI) to evaluate whether there is a hierarchy among the urban centers within the study area. The results indicate the existence of a hierarchy. Furthermore, empirical observation finds distinct complementarity relationships, rank-size distributions, and co-operative actions between the different cities, thus substantiating the claim that central place theory can be incorporated into an overall regional urban system. Besides, the presence of the densely distributed modern infrastructure system also appears to constitute a dimension of the overall urban system. There need further theoretical and empirical studies in order to support this proposition.