Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great ...Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.展开更多
A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also t...A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.展开更多
文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting col...文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.展开更多
基金Supported by National Nature Science Foundation of China(Grant No:51275340)
文摘Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61622107 and 61471149)
文摘A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.
文摘文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.