Hydrodynamic optimization of the hull forms can be realized through the implementation and integration of computational tools that consist of a hydrodynamic module, a hull surface representation and modification modul...Hydrodynamic optimization of the hull forms can be realized through the implementation and integration of computational tools that consist of a hydrodynamic module, a hull surface representation and modification module, and an optimization module. In the present paper, a new bulbous bow generation and modification technique has been developed and integrated into the hull surface representation and modification module. A radial basis function based surrogate model is developed to approximate the objective functions and reduce the computing cost. A multi-objective artificial bee colony optimization algorithm is implemented and integra- ted into the optimization module. To illustrate the integrated hydrodynamic optimization tools, a cargo ship is optimized for reduced drag. The optimal hull forms obtained are then validated computationally and experimentally. Validation results show that the prese- nt tools can be used efficiently and effectively in the simulation based design of the hull forms for reduced drag.展开更多
基金sponsored by the Office of Naval Research (ONR)sponsored by the National Natural Science Foundation of China (Grant Nos. 51279147, 51179143 and 51479150)
文摘Hydrodynamic optimization of the hull forms can be realized through the implementation and integration of computational tools that consist of a hydrodynamic module, a hull surface representation and modification module, and an optimization module. In the present paper, a new bulbous bow generation and modification technique has been developed and integrated into the hull surface representation and modification module. A radial basis function based surrogate model is developed to approximate the objective functions and reduce the computing cost. A multi-objective artificial bee colony optimization algorithm is implemented and integra- ted into the optimization module. To illustrate the integrated hydrodynamic optimization tools, a cargo ship is optimized for reduced drag. The optimal hull forms obtained are then validated computationally and experimentally. Validation results show that the prese- nt tools can be used efficiently and effectively in the simulation based design of the hull forms for reduced drag.