The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSI...The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSIS generates real signals of the ship heading,the rudder angle,the ship position and the output to the autopilot.A variety of factors,such as ship speed variety,shallow water effect,nonlinearity of yaw and actuator,and environmental disturbances like wind,wave and current are considered carefully.Detailed formulas for calculating relevant parameters are provided.Taken a naval ship as an example,the physical-digital simulations on SSIS and the digital simulation on a Marine System Simulator(MSS)were conducted separately in various sailing conditions.Simulation results show that the simple nonlinear responsive model can be applied to ship motion control and simulation with sufficient accuracy and effectiveness.展开更多
A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by t...A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.展开更多
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the req...It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.展开更多
Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulat...Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.展开更多
On the basis of the fractal geometry, a nactional Brownian Motion (FBM) model for the noise radiated by ship was established, under which its fractal dimension has been obtained and the Fractal Characteristic Vector (...On the basis of the fractal geometry, a nactional Brownian Motion (FBM) model for the noise radiated by ship was established, under which its fractal dimension has been obtained and the Fractal Characteristic Vector (FCV) was constructed in the fractional Brownian random field (FBRF). By using of them, a new technique of the characteristic analysis for target recognition in the underwater acoustics was presented. A comparative experiment for classification shows us that the FCV can be used as essential quantity by which some defects existing in the methods to do the characteristic extraction elsewhere can be remedied.展开更多
In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of...In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.展开更多
文摘The modeling of a ship steering integrated simulator(SSIS)applied to the design,debugging and maintenance of an autopilot is discussed.A nonlinear responsive model is proposed and applied to the design of SSIS.The SSIS generates real signals of the ship heading,the rudder angle,the ship position and the output to the autopilot.A variety of factors,such as ship speed variety,shallow water effect,nonlinearity of yaw and actuator,and environmental disturbances like wind,wave and current are considered carefully.Detailed formulas for calculating relevant parameters are provided.Taken a naval ship as an example,the physical-digital simulations on SSIS and the digital simulation on a Marine System Simulator(MSS)were conducted separately in various sailing conditions.Simulation results show that the simple nonlinear responsive model can be applied to ship motion control and simulation with sufficient accuracy and effectiveness.
基金Project(51005086)supported by the National Natural Science Foundation of ChinaProject(2010MS085)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(DMETKF2013008)supported by the Open Project of the State Key Laboratory of Digital Manufacturing Equipment and Technology,China
文摘A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.50879066 and 51409201)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.200804970009)
文摘It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.
基金Supported by the National Nature Science Foundation of China under Grant No.51109020 the National Key Project for Basic Research“973”(2009CB320805)
文摘Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.
文摘On the basis of the fractal geometry, a nactional Brownian Motion (FBM) model for the noise radiated by ship was established, under which its fractal dimension has been obtained and the Fractal Characteristic Vector (FCV) was constructed in the fractional Brownian random field (FBRF). By using of them, a new technique of the characteristic analysis for target recognition in the underwater acoustics was presented. A comparative experiment for classification shows us that the FCV can be used as essential quantity by which some defects existing in the methods to do the characteristic extraction elsewhere can be remedied.
基金supported by the National Natural Science Foundation of China(No.52271367).
文摘In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment.