期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Applicability of Hydrofoils as a Ship Control Device 被引量:1
1
作者 Md. Shamim Mahmud 《Journal of Marine Science and Application》 CSCD 2015年第3期244-249,共6页
Centrifugal forces are commonly created when ships turn, which may cause a ship to capsize in a critical situation. A mathematical model has been developed to optimize the stability coefficients for ship, with the aim... Centrifugal forces are commonly created when ships turn, which may cause a ship to capsize in a critical situation. A mathematical model has been developed to optimize the stability coefficients for ship, with the aim to prevent capsizing and to increase ship maneuverability in high-speed water craft. This model can be used to develop algorithms for control system improvement. The mathematical model presented in this paper optimized the use of multipurpose hydrofoils to reduce heeling and the trimming moment, maintaining an upright ship’s position and lessening the resistance via transverse force. Conventionally, the trimming and heeling of a ship are controlled using ballast water;however, under variable sea conditions it is sometimes difficult to control a ship’s motion using ballast water. In this case, a hydrofoil would be more stable and maneuverable than a ballast tank controlled vessel. A movable hydrofoil could theoretically be adapted from moveable aerofoil technology. This study proves the merit of further investigation into this possibility. 展开更多
关键词 HYDROFOIL ship roll stabilization TRIM rudder-roll damping center of flotation NACA foil section ship capsize gear system instability capsizing moment
下载PDF
Numerical Simulation of PMM Tests for A Ship in Close Proximity to Sidewall and Maneuvering Stability Analysis 被引量:1
2
作者 刘晗 马宁 顾解忡 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期884-897,共14页
As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechani... As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechanism (PMM) test provide a way to predict the change of ship maneuverability. This paper presents a numerical simulation of PMM model tests with variant distances to a vertical bank by using unsteady RANS equations. A hybrid dynamic mesh technique is developed to realize the mesh configuration and remeshing of dynamic PMM tests when the ship is close to the bank. The proposed method is validated by comparing numerical results with results of PMM tests in a circulating water channel. The first-order hydrodynamic derivatives of the ship are analyzed from the time history of lateral force and yaw moment according to the multiple-run simulating procedure and the variations of hydrodynamic derivatives with the ship-sidewall distance are given. The straight line stability and directional stability are also discussed and stable or unstable zone of proportional-derivative (PD) controller parameters for directional stability is shown, which can be a reference for course keeping operation when sailing near a bank. 展开更多
关键词 sidewall effect numerical simulation planar motion mechanism (PMM) hybrid dynamic mesh technique ship maneuvering stability
下载PDF
The Application of a Smartphone in Ship Stability Experiment
3
作者 Mohamed Abdelkader Djebli Benameur Hamoudi Omar Imine Lahouari Adjlout 《Journal of Marine Science and Application》 CSCD 2015年第4期406-412,共7页
The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in... The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in the measurement of heel angle. Nowadays, digital inclinometers are available, but they are expensive. In this study, the use of a smartphone application is presented for ship inclination and rolling-period tests. The idea consists of using accelerometer and gyroscope sensors built into the current smartphones for the measurements. Therefore, some experiments are carried out on an example trawler model to exhibit the uses and advantages of this method. The obtained results are in good agreement with those provided from the pendulum method and natural roll-period test. This application is new, easy, and more accurately assesses metacentric height during the inclining and rolling-period tests. 展开更多
关键词 ship stability GM-Meter inclining experiment rolling-period test SMARTPHONE ACCELEROMETER gyroscopic sensor
下载PDF
Design of Fin-propeller Test Set-up and Analysis of Roll Stabilization Ability
4
作者 PENG Xia-fu, LI Fu-yi, YE Gui-yunAutomation College, Harbin Engineering University, Harbin 150001, China 《Journal of Marine Science and Application》 2002年第1期73-76,80,共5页
Presents the fin-propeller test set-up to solve the problem of roll stabilization with ships in full speed range, withwhich, tests were run in water rank for acquisition of data, and concludes from data acquired that ... Presents the fin-propeller test set-up to solve the problem of roll stabilization with ships in full speed range, withwhich, tests were run in water rank for acquisition of data, and concludes from data acquired that the fin-propeller test set-up produces more lift than simple fin, and provides lateral thrust as well, and it is therefore an effective roll stabilization devicefor ships in full speed range. 展开更多
关键词 fin propeller test set up stabilization of ship roll full speed range test
下载PDF
The Model Research on the Flooding Time of the Warship Damaged Compartment
5
作者 Waldemar Mironiuk 《Journal of Shipping and Ocean Engineering》 2012年第4期217-223,共7页
Research on damage stability and unsinkability is a valuable source of knowledge of behaving a ship while flooding its compartments. The time when compartment is flooded (ty) and stability parameters are key element... Research on damage stability and unsinkability is a valuable source of knowledge of behaving a ship while flooding its compartments. The time when compartment is flooded (ty) and stability parameters are key elements which have influence on a rescue action. The knowledge of the time mentioned is very important for a commanding officer to make decisions while fighting for survival of the ship. Therefore, the purpose of research was to develop a method to accurately and quickly calculate the flooding time of selected ship compartment. To provide the information about the time ty, a new method was designed. This method was based on an accurate determination of the amount of water entering to the compartment. For this purpose, the permeability depends on the water level in the compartment. Next, the computer program was built for both the time tfcalculation and showing the flooding process. This method was tested experimentally and the results of the tests are presented in the paper. In the next part of research, which was carried out on the laboratory stand bed, the flooding time of damaged compartment of warship model was measured. The results of calculation are compared to the experiments and discussed. 展开更多
关键词 ship stability flooding time warship.
下载PDF
A Comprehensive Analysis of the Stability and Powering Performances of a Hard Sail-Assisted Bulk Carrier
6
作者 Md Daluar Hussain Osman Md Amin 《Journal of Marine Science and Application》 CSCD 2021年第3期426-445,共20页
The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried ou... The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried out on a model of bulk carrier fitted with five rigid sails with a 180°rotating mechanism for maximum usage of wind power and a telescopic reefing mechanism for folding it during berthing.The stability of the ship has been verified through the calculations of initial stability,static stability,and dynamic stability through the fulfillment of the weather criterion using MAXSURF software.The structural analysis of the sail was carried out in ANSYS static structural module.Several flow simulations were carried out in ANSYS fluent module to predict the thrusts produced by the sails at different apparent wind angles,which would in turn reduce the thrust required from the propeller.In this way,the brake horse powers required for different sail arrangements were analyzed to find out a guideline for this wind propulsion system to generate better powering performances.To consider drift and yaw effect on propulsion system,an MMG mathematical model–based simulation was carried out for different drift angles of motion of the ship considering hard sail–based wind loads.Through these analyses,it has been found out that the hard sail–based wind-assisted propulsion system in some cases have produced a reduction of more than 30%brake power in straight ahead motion and around 20%reduction in case of drifting ships compared to the model having no sails. 展开更多
关键词 Wind-assisted propulsion system Fuel consumption Brake power Carbon dioxide emission Wing sail Bulk carrier Sail ship stability CFD simulations
下载PDF
Stacking Sequence of Marine Container Minimizing Space in Container Terminals
7
作者 Ning Zhang Yutaka Watanabe 《Journal of Traffic and Transportation Engineering》 2016年第2期86-93,共8页
Heavier marine containers should be loaded first into ships at container terminals so that ship stability can be maintained during transport. It is helpful for the container terminals if lighter containers arrive earl... Heavier marine containers should be loaded first into ships at container terminals so that ship stability can be maintained during transport. It is helpful for the container terminals if lighter containers arrive earlier than heavier containers, because the latter can be stacked on the former. Therefore, the heavier ones can be loaded into the ships first. Shippers of marine containers do not, however, care for the matters of ships. They follow their own time schedules of supply chains sending marine containers with no relation to container weight. In addition to the conflict explained above, a ship must accommodate numerous containers sent by many shippers. Consequently, marshalling containers at container terminals before loading them into ships is necessary, although it causes inefficiencies of time and cost of cargo handling. This paper presents a proposal of a simple sequence of stacking marine containers at container terminals, adapting to random arrival of the containers irrespective of their weight, but it naturally keeps heavier containers stacked higher together with the stacking space minimized. An algorithm related to this proposal is the following: First, weight-ranked stacking addresses are assigned initially in a block of space at a container terminal; Second, containers are accepted and stacked up in the first block as they arrive at the terminal; Third, a lighter ranked address is sought for the next container if the number of containers on the initially assigned address for the container has already reached the maximum, which depends on the height of cargo handling equipment such as transfer cranes; Fourth, such containers are stacked up on the lighter ranked address. The address is reassigned with the weight rank of the container; Fifth, a heavier ranked address is sought for the next container if no lighter ranked address can be found; Sixth, such containers are stacked up on the heavier ranked address; Seventh, change the block to the next one if either a lighter or heavier ranked address cannot be found; Eighth, repeat the sequence above. This paper demonstrates the algorithm run by a simulation model for which actual arrival records of marine containers to a container terminal of Port of Yokohama are applied. Six ships of different sailing routes are analyzed using the simulation model. All analysis results show that heavier containers are stacked higher with a minimum number of blocks. Therefore, no marshalling of containers is necessary for loading the containers into ships. 展开更多
关键词 Cargo handling stability of ships marshalling of containers port logistics.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部