The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three con...The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.展开更多
The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operatin...The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.展开更多
The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including t...The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.展开更多
针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对...针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对船舶的参数化模型进行辩识,设计PM-NMPC控制器。对环境干扰下的某集装箱船艏向角控制和轨迹跟踪进行试验,验证控制算法的有效性,并将该控制器与比例积分微分控制器(Proportional plus Integral plus Derivative cotroller, PID cotroller)控制器进行对比。仿真结果表明,PM-NMPC控制器轨迹跟踪效果更好,对未知干扰具有更强的稳健性。展开更多
文摘The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
文摘The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.
基金supported by the National Natural Science Foundation of China (61074023,60975075)the Natural Science Foundation of Jiangsu Province of China (BK2008404)+1 种基金the Science and Technology Pillar Program of Jiangsu Province of China (BE2009160)the Innovation Project of Graduate Students of Jiangsu Province of China(CXZZ 0254)
文摘The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.
文摘针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对船舶的参数化模型进行辩识,设计PM-NMPC控制器。对环境干扰下的某集装箱船艏向角控制和轨迹跟踪进行试验,验证控制算法的有效性,并将该控制器与比例积分微分控制器(Proportional plus Integral plus Derivative cotroller, PID cotroller)控制器进行对比。仿真结果表明,PM-NMPC控制器轨迹跟踪效果更好,对未知干扰具有更强的稳健性。