The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low...The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.展开更多
A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have be...A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have been used in the interaction forces analysis:a tug and a tanker,advancing parallel to each other with different lateral distances and two different values of the fluid depth.Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface.A fair agreement was obtained with available experimental data and results obtained by panel method.The influence of viscosity in the computations is found to be comparatively weak,while the wavemaking effects may be important,at small magnitude of the horizontal clearance.展开更多
基金Supported by Ministry of Industry and Information(No.K24097)
文摘The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
基金the project PTDC/EMSTRA/5628/2014 "Maneuvering and moored ships in ports-physical and numerical modeling,"funded by the Portuguese Foundation for Science and Technology(FCT)financed by FCT under contract number SFRH/BD/67070/2009
文摘A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have been used in the interaction forces analysis:a tug and a tanker,advancing parallel to each other with different lateral distances and two different values of the fluid depth.Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface.A fair agreement was obtained with available experimental data and results obtained by panel method.The influence of viscosity in the computations is found to be comparatively weak,while the wavemaking effects may be important,at small magnitude of the horizontal clearance.