In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel(diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose ...In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel(diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.展开更多
In comparison to onshore facilities,ships,and their machinery are subjected to challenging external influences such as rolling,vibration,and continually changing air&cooling water temperatures in the marine enviro...In comparison to onshore facilities,ships,and their machinery are subjected to challenging external influences such as rolling,vibration,and continually changing air&cooling water temperatures in the marine environment.However,these factors are typically neglected,or their consequences are deemed to have little effect on machinery,the environment,or human life.In this study,seasonal air&seawater temperature effects on marine diesel engine performance parameters and emissions are investigated by using a full-mission engine room simulator.A tanker ship two-stroke main engine MAN B&W 6S50 MC-C with a power output of 8600 kW is employed during the simulation process.Furthermore,due to its diverse risks,the Marmara Region is chosen as the application area for real-time average temperature data.Based on the research findings,even minor variations in seasonal temperatures have a significant influence on certain key parameters of a ship’s main engine including scavenge pressure,exhaust temperatures,compression and combustion pressures,fuel consumption,power,and NOx-SOx-COx emissions.For instance,during the winter season,the cylinder compression pressure(pc)is recorded at 94 bar,while the maximum pressure(pz)reaches 110 bar.In the summer,pc experiences a decrease of 81 bar,while pz is measured at 101 bar.The emission of nitrogen oxides(NOx)exhibits a measurement of 784 parts per million(ppm)during winter and 744 in summer.The concentration of sulfur oxides(SOx)is recorded at 46 ppm in winter and 53 in summer.Given the current state of global warming and climate change,it is an undeniable fact that the impact of these phenomena will inevitably escalate.展开更多
基金Supported by Transformation of Scientific and Technological Achievements Special Fund(No.SBA2015020077)
文摘In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel(diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.
文摘In comparison to onshore facilities,ships,and their machinery are subjected to challenging external influences such as rolling,vibration,and continually changing air&cooling water temperatures in the marine environment.However,these factors are typically neglected,or their consequences are deemed to have little effect on machinery,the environment,or human life.In this study,seasonal air&seawater temperature effects on marine diesel engine performance parameters and emissions are investigated by using a full-mission engine room simulator.A tanker ship two-stroke main engine MAN B&W 6S50 MC-C with a power output of 8600 kW is employed during the simulation process.Furthermore,due to its diverse risks,the Marmara Region is chosen as the application area for real-time average temperature data.Based on the research findings,even minor variations in seasonal temperatures have a significant influence on certain key parameters of a ship’s main engine including scavenge pressure,exhaust temperatures,compression and combustion pressures,fuel consumption,power,and NOx-SOx-COx emissions.For instance,during the winter season,the cylinder compression pressure(pc)is recorded at 94 bar,while the maximum pressure(pz)reaches 110 bar.In the summer,pc experiences a decrease of 81 bar,while pz is measured at 101 bar.The emission of nitrogen oxides(NOx)exhibits a measurement of 784 parts per million(ppm)during winter and 744 in summer.The concentration of sulfur oxides(SOx)is recorded at 46 ppm in winter and 53 in summer.Given the current state of global warming and climate change,it is an undeniable fact that the impact of these phenomena will inevitably escalate.