A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing ...An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing flight dynamics model, the augmented model involves with more pilot control information in cockpit and is validated against the flight test data. Based on the augmented flight dynamics model, the optimal landing procedure of XV-15 tilt-rotor aircraft after one engine failure is formulated into a Nonlinear Optimal Control Problem(NOCP), solved by collocation and numerical optimization method. The time histories of pilot controls in cockpit during the optimal landing procedure are obtained for the evaluation of pilot workload. An evaluation method which can synthetically quantify the pilot workload in time and frequency domains is proposed with metrics of aggressiveness and cutoff frequencies of pilot controls. The scale of the pilot workload is compared with those of the shipboard landing procedures, bob-up/bob-down and dash/quickstop maneuvers of UH-60 helicopter. The results show that the aggressiveness of pilot collective and longitudinal controls for the tilt-rotor aircraft optimal landing procedure after one engine failure are higher than those for UH-60 helicopter shipboard landing procedures up to the condition of sea state 4, while the pilot cutoff frequency of collective control is lower than that of the bob-up/bob-down maneuver but the pilot cutoff frequency of longitudinal control is higher than that of the dash/quick-stop maneuver. The evaluated pilot workload level is between Cooper–Harper HQR Level 2 and Level 3.展开更多
To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory...To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory of diffraction are used to deal with the instantaneous electromagnetic scattering of the target. The RCS of the aircraft in the helicopter mode, fixed-wing mode and transition mode is analyzed. The results show that in the fixed-wing mode, the blade has a weaker deflection effect on the head incident wave in the horizontal plane. The helicopter mode improves the scattering of the rotor in the horizontal plane, while it increases the scattering source on the surface of the nacelle. At a fixed tilt angle, the RCS of the aircraft under a given azimuth angle still shows obvious dynamic characteristics. Dynamic tilting significantly changes the scattering effects of blades, hubs, nacelles and wingtips. The proposed approach is shown to be feasible and effective to learn the electromagnetic scattering characteristics of the tilt rotor aircraft.展开更多
This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversi...This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversion mode,a switched linear model is developed by using the Jacobian linearization method and designing the switching signal based on the mast angle.Furthermore,an ℋ_(∞) state-tracking control scheme is designed to deal with the conversion mode control issue.Moreover,instead of limiting the amplitude of control inputs,a smooth interpolation method is developed to create bumpless performance.Finally,the XV-15 tilt-rotor aircraft is chosen as a prototype to illustrate the effectiveness of this developed control method.展开更多
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China (No. 11672128)
文摘An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing flight dynamics model, the augmented model involves with more pilot control information in cockpit and is validated against the flight test data. Based on the augmented flight dynamics model, the optimal landing procedure of XV-15 tilt-rotor aircraft after one engine failure is formulated into a Nonlinear Optimal Control Problem(NOCP), solved by collocation and numerical optimization method. The time histories of pilot controls in cockpit during the optimal landing procedure are obtained for the evaluation of pilot workload. An evaluation method which can synthetically quantify the pilot workload in time and frequency domains is proposed with metrics of aggressiveness and cutoff frequencies of pilot controls. The scale of the pilot workload is compared with those of the shipboard landing procedures, bob-up/bob-down and dash/quickstop maneuvers of UH-60 helicopter. The results show that the aggressiveness of pilot collective and longitudinal controls for the tilt-rotor aircraft optimal landing procedure after one engine failure are higher than those for UH-60 helicopter shipboard landing procedures up to the condition of sea state 4, while the pilot cutoff frequency of collective control is lower than that of the bob-up/bob-down maneuver but the pilot cutoff frequency of longitudinal control is higher than that of the dash/quick-stop maneuver. The evaluated pilot workload level is between Cooper–Harper HQR Level 2 and Level 3.
基金supported by the Project funded by China Postdoctoral Science Foundation(Nos.BX20200035,2020M680005)。
文摘To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory of diffraction are used to deal with the instantaneous electromagnetic scattering of the target. The RCS of the aircraft in the helicopter mode, fixed-wing mode and transition mode is analyzed. The results show that in the fixed-wing mode, the blade has a weaker deflection effect on the head incident wave in the horizontal plane. The helicopter mode improves the scattering of the rotor in the horizontal plane, while it increases the scattering source on the surface of the nacelle. At a fixed tilt angle, the RCS of the aircraft under a given azimuth angle still shows obvious dynamic characteristics. Dynamic tilting significantly changes the scattering effects of blades, hubs, nacelles and wingtips. The proposed approach is shown to be feasible and effective to learn the electromagnetic scattering characteristics of the tilt rotor aircraft.
基金Project supported by the National Natural Science Foundation of China (Nos.62103186 and 62122038)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20210285 and BK20211565)the China Postdoctoral Science Foundation (Nos.2021TQ0151 and 2021M691571)。
文摘This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversion mode,a switched linear model is developed by using the Jacobian linearization method and designing the switching signal based on the mast angle.Furthermore,an ℋ_(∞) state-tracking control scheme is designed to deal with the conversion mode control issue.Moreover,instead of limiting the amplitude of control inputs,a smooth interpolation method is developed to create bumpless performance.Finally,the XV-15 tilt-rotor aircraft is chosen as a prototype to illustrate the effectiveness of this developed control method.