期刊文献+
共找到4,320篇文章
< 1 2 216 >
每页显示 20 50 100
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method 被引量:1
1
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Evolution mechanism and treatment timing of penetrating fissures
2
作者 ZHANG Yanjun YAN Yueguan +1 位作者 ZHU Yuanhao DAI Huayang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3453-3473,共21页
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ... The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas. 展开更多
关键词 Mining subsidence Ecological restoration FISSURES evolution mechanism Prediction model Treatment timing
下载PDF
Microstructural evolution and deformation mechanisms of superplastic aluminium alloys:A review
3
作者 Guo-tong ZOU Shi-jie CHEN +3 位作者 Ya-qi XU Bao-kun SHEN Yu-jia ZHANG Ling-ying YE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3069-3092,共24页
Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the m... Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys. 展开更多
关键词 uminium alloys SUPERPLASTICITY superplastic deformation mechanism grain boundary sliding micro-structural evolution
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
4
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution mechanical flexibility Hydrogen evolution reaction
下载PDF
Mechanical properties and energy evolutions of burst-prone coal samples with holes and fillings
5
作者 Yukai Fu Yongzheng Wu +3 位作者 Junchen Li Penghe Zhou Zhuoyue Sun Jie He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期176-189,共14页
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa... During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body. 展开更多
关键词 Rock mechanics Coal mechanical properties Hole filling Energy evolution
下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
6
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 AZ31 Mg alloy B-ECAP microstructure texture evolution mechanical properties
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
7
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−Cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Mechanical properties and energy evolution law of water bearing sandstone under cyclic loading
8
作者 SUN Xiaoming DING Jiaxu +4 位作者 HE Linsen SHI Fukun ZHANG Yong MIAO Chengyu ZHANG Jing 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3913-3929,共17页
Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failu... Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failure mechanisms from the perspectives of hydro-mechanical coupling and mechanical properties.Therefore,this study conducted uniaxial cyclic loading-unloading tests on sandstone samples with different water contents(0%,0.26%,0.52%,0.78%,and 1.04%)to investigate the microstructural evolution,energy evolution laws,and failure characteristics under varying water contents and cyclic loading conditions.The main conclusions are as follows:(1)Concerning micro-pore structures,as the water content increases,the porosity and maximum pore size of the sandstone first decrease and then increase.At 0%water content,the porosity is 4.82%and the maximum pore size is 31.94μm.At 0.26%water content,both porosity and maximum pore size decrease to 3.03%and 16.15μm,respectively.When the water content reaches 1.04%,the porosity and maximum pore size increase to 14.34%and 45.99μm,respectively.(2)Regarding energy evolution laws,the energy evolution of the specimens during cyclic loading-unloading mainly converts to elastic energy,showing a step-wise increase in energy.Further analysis reveals that the water content has a significant impact on the dissipation energy coefficient of the sandstone.At lower stress levels(<0.4σmax),the water content has a negligible effect,while at higher stress levels(>0.85σmax),an increase in water content leads to increased fluctuations in the dissipation energy coefficient.(3)In terms of failure characteristics,with increasing water content,the failure mode of the specimens shifts from primary crack failure to microcrack failure,corresponding to the energy evolution during cyclic loading-unloading processes. 展开更多
关键词 Cyclic loading and unloading SANDSTONE mechanical property Energy evolution Pore structure
下载PDF
Effect of neutral polymeric bonding agent on tensile mechanical properties and damage evolution of NEPE propellant
9
作者 M.Wubuliaisan Yanqing Wu +3 位作者 Xiao Hou Kun Yang Hongzheng Duan Xinmei Yin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne... Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder. 展开更多
关键词 Solid propellant Bonding agent mechanical properties Damage evolution Cohesive-zone model Interface debonding
下载PDF
In situ infrared, Raman and X-ray spectroscopy for the mechanistic understanding of hydrogen evolution reaction
10
作者 Andi Haryanto Kyounghoon Jung +1 位作者 Chan Woo Lee Dong-Wan Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期632-651,I0014,共21页
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use... Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER. 展开更多
关键词 Hydrogen evolution reaction Infrared spectroscopy Raman spectroscopy X-ray absorption spectroscopy Reaction mechanism
下载PDF
Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution
11
作者 Cheng Han Zhengguang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期515-536,共22页
A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies t... A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples. 展开更多
关键词 Non-newtonian mechanical systems prediction and estimation pattern moving probability density evolution pseudo partial derivative
下载PDF
Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer 被引量:13
12
作者 Ding Shuxue Jing Hongwen +2 位作者 Chen Kunfu Xu Guo'an Meng Bo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期573-580,共8页
By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instr... By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment. 展开更多
关键词 Fully grouted bolt Stress evolution Support mechanism Weak interlayer Deformation process
下载PDF
MICROSTRUCTURAL EVOLUTION AND MECHANISMS OF SUPERPLASTICITY IN LARGE GRAINED IRON ALUMINIDES 被引量:7
13
作者 Dongliang Lin (T.L.Lin) and Yi Liu Open Laboratory of Education Ministry of China for High Temperature Materials Tests, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期228-239,共12页
The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size sup... The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size superplastic alloys. However, superplastic behavior was found in large grained iron aluminides without the usual prerequisites for the superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that average grain size of large grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with the increase of strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation gliding and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed. 展开更多
关键词 iron ALUMINIDES SUPERPLASTICITY mechanism microstructural evolution DISLOCATION GLIDING DISLOCATION CLIMB SUPERPLASTIC flow
下载PDF
Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression 被引量:22
14
作者 LI Peng CAI Mei-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1857-1874,共18页
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and... The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively. 展开更多
关键词 energy evolution mechanism failure criteria jointed rock mass cross joint uniaxial compression
下载PDF
Accumulation Mechanisms and Evolution History of the Giant Puguang Gas Field,Sichuan Basin,China 被引量:4
15
作者 HAO Fang GUO Tonglou +6 位作者 DU Chunguo ZOU Huayao CAI Xunyu ZHU Yangming LI Pingping WANG Chunwu ZHANG Yuanchun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期136-145,共10页
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil ... Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil reservoir. The fluid conduit system at the time of intensive oil accumulation in the field was reconstructed, and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters. The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field. The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen, and the focusing of oils originated from a large area of the generative kitchen, were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved. The Puguang gas field had experienced a three-stage evolution. The post-accumulation processes, especially the organic-inorganic interaction in the hydrocarbon-water-rock system, had not only profoundly altered the composition and characteristics of the petroleum fluids, but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals. 展开更多
关键词 migration pathway accumulation mechanism chemical alteration evolution history Puguang gas field
下载PDF
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
16
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (ASAGA).
下载PDF
Experimental study on the deformation behaviour,energy evolution law and failure mechanism of tectonic coal subjected to cyclic loads 被引量:5
17
作者 Deyi Gao Shuxun Sang +4 位作者 Shiqi Liu Jian Wu Jishi Geng Wang Tao Tengmin Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1301-1313,共13页
Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the me... Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy. 展开更多
关键词 Tectonic coal Cyclic loading Deformation behaviour Energy evolution Failure mechanism
下载PDF
Formation Mechanisms and Geomorphic Evolution of the Erlian Mudflow Fans, Eastern Guide Basin of the Upper Reaches of Yellow River 被引量:2
18
作者 ZHAO Wuji YIN Zhiqiang +1 位作者 XU Qiang QIN Xiaoguang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期578-589,共12页
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie... Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred. 展开更多
关键词 the upper reaches of Yellow River Guide Basin mud-flow fan forming mechanism geomorphic evolution
下载PDF
O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts 被引量:5
19
作者 Xue-Peng Zhang Hong-Yan Wang +2 位作者 Haoquan Zheng Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1253-1268,共16页
Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of ph... Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. 展开更多
关键词 Oxygen evolution reaction Water oxidation O-O bond formation Transition metal complex Molecular electrocatalysis Reaction mechanism
下载PDF
Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction 被引量:3
20
作者 Xiaokang Liu Zexing He +6 位作者 Muhammad Ajmal Chengxiang Shi Ruijie Gao Lun Pan Zhen‑Feng Huang Xiangwen Zhang Ji‑Jun Zou 《Transactions of Tianjin University》 EI CAS 2023年第4期247-253,共7页
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution... Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM. 展开更多
关键词 Water electrolysis Oxygen evolution reaction(OER) Adsorbate evolution mechanism(AEM) Lattice oxygen oxidation mechanism(LOM)
下载PDF
上一页 1 2 216 下一页 到第
使用帮助 返回顶部