With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fr...With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fracturing mechanisms of short-delay blasting. In this work, a rectangle model with two circle boreholes is modeled as a particles assembly based on the discrete element method to simulate the shock wave interactions induced by millisecond blasting. The rectangle model has a size of 12 × 6 m (L × W) and two blast holes have the same diameter of 12 cm. The shock waves are simplifi ed as time-varying forces applied at the particles of walls of the two boreholes. Among a series of numerical tests in this study, the spacing between two adjacent boreholes and delay time of millisecond blasting are considered as two primary variables, and the decoupling charge with a coeffi cient of 1.5 is taken into account in each case. The results show that stress superposition is not a key factor for improving rock fragmentation (tensile stress interactions rather than compressive stress superposition could aff ect the generation of cracks), whereas collision actions from isolated particles or particles with weakened constraints play a crucial role in creating the fracture network. The delay time has an infl uence on causing cracks in rock blasting, however, whether it works heavily depends on the distance between the two holes.展开更多
To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results sh...To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV.展开更多
It is important to minimize the destruction of defense works when blasted. In our opinion, information in the available literature is very deficient. We now present our research results on better and simpler formulas ...It is important to minimize the destruction of defense works when blasted. In our opinion, information in the available literature is very deficient. We now present our research results on better and simpler formulas for calculating the velocities and displacements of shrapnel and a shock wave; these formulas are indispensable for understanding the destruction of blast. Formulas now available in China are too complicated. In this paper, we derive Equation ( 13 ) as the formula for calculating the velocity of shrapnel and Equation ( 18 ) as that for calculating the velocity of a shock wave. We used the test data of Denver Research Institute, as reported in Reference 4, as numerical example and found that our Equations (13) and (18) give calculated results that agree well with their test data in two respects: ( 1 ) both test data and our calculations show that at first a shock wave is ahead of shrapnel, then their displacements are equal, and finaUy shrapnel is ahead of the shock wave; (2) when the displacements of shrapnel and shock wave are equal, the time is 0. 34 s according to test data and 0. 31 s according to our calculations.展开更多
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem...The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.展开更多
With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is ...With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is set up in front of the exhaust pipe. In the present study, reflectors were installed in the high-pressure section of the shock tube to generate blast waves, and three types of expansion region were investigated, combined with acoustic material of glass wool. The pressure decay was evaluated by transmission factor and reflection factor for the incident blast wave, together with pressure histories and high-speed Schlieren photography. As results, it was confirmed that the acoustic material greatly contributed to blast-wave attenuation: the one stage expansion model with glass wool recorded the highest decay of the peak over pressure for transmission, and other models with glass wool showed the second highest. The acoustic material also contributed to decay of reflected shock waves propagating toward an upstream duct.展开更多
The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an impo...The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.展开更多
The rock-breaking mechanism and effect of confined blasting were analysed by blasting and impact dynamic mechanics, fluid dynamic mechanics, fracture mechanics as well as blasting experiment. The results showed that t...The rock-breaking mechanism and effect of confined blasting were analysed by blasting and impact dynamic mechanics, fluid dynamic mechanics, fracture mechanics as well as blasting experiment. The results showed that the fracturing of surrounding rock in confined blasting condition is the result of coaction of rock pre-cracking by shock wave and stress wave and the continuing expanding crackenhancement of confined medium, and the model of crack development of borehole surrounding rock in confined blasting condition was established. This study acquired the damage range of surrounding rock under the action of shock wave and stress wave, as well as the crack development characteristics of surrounding rock after the wedge-in confined medium into the crack space. Deep-hole confined blasting experiment on large rock showed that the high-efficient utilisation of in-hole explosive was achieved and the safety of rock blasting operation was ensured. Safe static rock-breaking under the action of high-efficient explosive blasting was achieved as well as the unification of super dynamic load of explosive blasting and static rock-breaking of water medium.展开更多
基金National Science Foundation for Young Scientists of China under Grant No.51709176National Natural Science Foundation of China under Grant No.51979170+2 种基金Key Project of Hebei Natural Science Foundation under Grant No.F2019210243Hebei Province Science Foundation for Young Scientists under Grant No.E2018210046Open Project of State Key Laboratory of Advanced Electromagnetic Engineering and Technology under Grant No.AEET 2019KF005
文摘With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fracturing mechanisms of short-delay blasting. In this work, a rectangle model with two circle boreholes is modeled as a particles assembly based on the discrete element method to simulate the shock wave interactions induced by millisecond blasting. The rectangle model has a size of 12 × 6 m (L × W) and two blast holes have the same diameter of 12 cm. The shock waves are simplifi ed as time-varying forces applied at the particles of walls of the two boreholes. Among a series of numerical tests in this study, the spacing between two adjacent boreholes and delay time of millisecond blasting are considered as two primary variables, and the decoupling charge with a coeffi cient of 1.5 is taken into account in each case. The results show that stress superposition is not a key factor for improving rock fragmentation (tensile stress interactions rather than compressive stress superposition could aff ect the generation of cracks), whereas collision actions from isolated particles or particles with weakened constraints play a crucial role in creating the fracture network. The delay time has an infl uence on causing cracks in rock blasting, however, whether it works heavily depends on the distance between the two holes.
文摘To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV.
文摘It is important to minimize the destruction of defense works when blasted. In our opinion, information in the available literature is very deficient. We now present our research results on better and simpler formulas for calculating the velocities and displacements of shrapnel and a shock wave; these formulas are indispensable for understanding the destruction of blast. Formulas now available in China are too complicated. In this paper, we derive Equation ( 13 ) as the formula for calculating the velocity of shrapnel and Equation ( 18 ) as that for calculating the velocity of a shock wave. We used the test data of Denver Research Institute, as reported in Reference 4, as numerical example and found that our Equations (13) and (18) give calculated results that agree well with their test data in two respects: ( 1 ) both test data and our calculations show that at first a shock wave is ahead of shrapnel, then their displacements are equal, and finaUy shrapnel is ahead of the shock wave; (2) when the displacements of shrapnel and shock wave are equal, the time is 0. 34 s according to test data and 0. 31 s according to our calculations.
文摘The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.
文摘With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is set up in front of the exhaust pipe. In the present study, reflectors were installed in the high-pressure section of the shock tube to generate blast waves, and three types of expansion region were investigated, combined with acoustic material of glass wool. The pressure decay was evaluated by transmission factor and reflection factor for the incident blast wave, together with pressure histories and high-speed Schlieren photography. As results, it was confirmed that the acoustic material greatly contributed to blast-wave attenuation: the one stage expansion model with glass wool recorded the highest decay of the peak over pressure for transmission, and other models with glass wool showed the second highest. The acoustic material also contributed to decay of reflected shock waves propagating toward an upstream duct.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)
文摘The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.
基金supported by the National Natural Science Foundation(Nos.51574220,51604262)the Foundation Research Project of Jiangsu Province(No.BK20160256)+1 种基金the Postdoctoral Science Foundation(No.2015M581896)the Postdoctoral Science Foundation Project of Jiangsu Province(No.1601212C)
文摘The rock-breaking mechanism and effect of confined blasting were analysed by blasting and impact dynamic mechanics, fluid dynamic mechanics, fracture mechanics as well as blasting experiment. The results showed that the fracturing of surrounding rock in confined blasting condition is the result of coaction of rock pre-cracking by shock wave and stress wave and the continuing expanding crackenhancement of confined medium, and the model of crack development of borehole surrounding rock in confined blasting condition was established. This study acquired the damage range of surrounding rock under the action of shock wave and stress wave, as well as the crack development characteristics of surrounding rock after the wedge-in confined medium into the crack space. Deep-hole confined blasting experiment on large rock showed that the high-efficient utilisation of in-hole explosive was achieved and the safety of rock blasting operation was ensured. Safe static rock-breaking under the action of high-efficient explosive blasting was achieved as well as the unification of super dynamic load of explosive blasting and static rock-breaking of water medium.