Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of ...Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.展开更多
An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and t...An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method(SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G(s) and the first structural constant G_Ⅰ. As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G_Ⅱ, the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.展开更多
Wennerstrom and Puterbaugh (1984) presented a model for predicting the shock loss in a compressor blade row that took into account the three-dimemionality of the shock surface. Both the measured data and the numeric...Wennerstrom and Puterbaugh (1984) presented a model for predicting the shock loss in a compressor blade row that took into account the three-dimemionality of the shock surface. Both the measured data and the numerical solution show that the shock surface is almost normal to the relative flow on each S<sub>1</sub> stream surface near the design flow condition. The shock surface is oblique in the spanwise direction because of the sweep of展开更多
The shock tubes with area change are used in the free piston shock tunnels,owing to its higher driver effect.For optimized operation of this kind of shock tube,a computer program for fast simulation of transient hyper...The shock tubes with area change are used in the free piston shock tunnels,owing to its higher driver effect.For optimized operation of this kind of shock tube,a computer program for fast simulation of transient hypersonic flow is presented.The numerical modeling embodied within this code is based on a quasi-one-dimensional Lagrangian description of the gas dynamics.In this code,a mass-loss model is also applied by using Mirels′theory of shock attenuation.The simulation of particular condition for T4 free piston shock tunnel is conducted and compared with experimental measurements and numerical simulation.The results provide good estimate for shock speed and pressure obtained after shock reflection.展开更多
研究了承压热冲击(PTS)事故发生时,变化的堆芯衰变热对反应堆压力容器(RPV)安全分析的影响。基于ACP1000三回路反应堆压力容器,对25 cm 2小破口失水事故工况应用三维流固热耦合方法进行模拟。计算了事故下2000 s内堆芯衰变热随时间的变...研究了承压热冲击(PTS)事故发生时,变化的堆芯衰变热对反应堆压力容器(RPV)安全分析的影响。基于ACP1000三回路反应堆压力容器,对25 cm 2小破口失水事故工况应用三维流固热耦合方法进行模拟。计算了事故下2000 s内堆芯衰变热随时间的变化函数,得到变化堆芯衰变热影响下冷却剂经过堆芯后的温升、三回路模型安注流动轨迹、确定RPV环腔内温度最低点(冷点)的位置,并在此处施加裂纹影响,得到变化堆芯衰变热影响下应力强度因子分析结果,并与1 MW/m 3堆芯衰变热结果进行比较。结果表明,在本瞬态工况下变化的堆芯衰变热对流经的冷却剂有明显的升温作用,RPV内壁应力也有16.02%的增幅,应力强度因子有30.1%的增幅。展开更多
森林火灾后因火烧迹地土壤斥水性,导致坡面径流和土壤可蚀性增强,提高了火后泥石流易发性,而土壤团聚体稳定性是影响土壤入渗能力和侵蚀敏感性的关键指标。目前常用于火烧迹地土壤团聚体稳定性测定的水滴冲击测定方法(counting the numb...森林火灾后因火烧迹地土壤斥水性,导致坡面径流和土壤可蚀性增强,提高了火后泥石流易发性,而土壤团聚体稳定性是影响土壤入渗能力和侵蚀敏感性的关键指标。目前常用于火烧迹地土壤团聚体稳定性测定的水滴冲击测定方法(counting the number of water drop impacts,CND),不适用于原位测定且耗时较长(滴定一组团聚体需要数小时)。因此文章提出一种基于冲击振荡破坏效应的团聚体稳定性测定方法(shock and vibration damage method,SVD)。充分考虑容重、有机质含量和斥水性对土壤团聚体稳定性的影响,通过室内火烧模拟试验,制备了13种类型的土壤团聚体。采用自制的试验仪器进行SVD法正交试验测定土壤团聚体质量损失率,并与传统CND法测得的破坏团聚体的水滴数量进行对比。结果表明:SVD法的测定MT-6方案(冲击高度1 m、容器容水量40%、冲击5次、测定团聚体20颗)与CND法的测定结果具有很强的一致性(Kendall系数=0.797)和相关性(R2=0.634),测定时间较短(测定一组团聚体约5 min),且测定结果区分度较好(约62%的团聚体MLR位于区分度良好的40%~60%区间),将其作为SVD法的最优测定方案。此外,SVD法试验装置结构简单、便携易拆卸,可用于原位快速且定量地区分火烧迹地不同火烈度下土壤团聚体稳定性水平,对火烧迹地土壤侵蚀、水土流失治理以及火后泥石流起动机理研究具有重要指导意义。展开更多
文摘Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.
文摘An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method(SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G(s) and the first structural constant G_Ⅰ. As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G_Ⅱ, the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.
文摘Wennerstrom and Puterbaugh (1984) presented a model for predicting the shock loss in a compressor blade row that took into account the three-dimemionality of the shock surface. Both the measured data and the numerical solution show that the shock surface is almost normal to the relative flow on each S<sub>1</sub> stream surface near the design flow condition. The shock surface is oblique in the spanwise direction because of the sweep of
文摘The shock tubes with area change are used in the free piston shock tunnels,owing to its higher driver effect.For optimized operation of this kind of shock tube,a computer program for fast simulation of transient hypersonic flow is presented.The numerical modeling embodied within this code is based on a quasi-one-dimensional Lagrangian description of the gas dynamics.In this code,a mass-loss model is also applied by using Mirels′theory of shock attenuation.The simulation of particular condition for T4 free piston shock tunnel is conducted and compared with experimental measurements and numerical simulation.The results provide good estimate for shock speed and pressure obtained after shock reflection.
文摘森林火灾后因火烧迹地土壤斥水性,导致坡面径流和土壤可蚀性增强,提高了火后泥石流易发性,而土壤团聚体稳定性是影响土壤入渗能力和侵蚀敏感性的关键指标。目前常用于火烧迹地土壤团聚体稳定性测定的水滴冲击测定方法(counting the number of water drop impacts,CND),不适用于原位测定且耗时较长(滴定一组团聚体需要数小时)。因此文章提出一种基于冲击振荡破坏效应的团聚体稳定性测定方法(shock and vibration damage method,SVD)。充分考虑容重、有机质含量和斥水性对土壤团聚体稳定性的影响,通过室内火烧模拟试验,制备了13种类型的土壤团聚体。采用自制的试验仪器进行SVD法正交试验测定土壤团聚体质量损失率,并与传统CND法测得的破坏团聚体的水滴数量进行对比。结果表明:SVD法的测定MT-6方案(冲击高度1 m、容器容水量40%、冲击5次、测定团聚体20颗)与CND法的测定结果具有很强的一致性(Kendall系数=0.797)和相关性(R2=0.634),测定时间较短(测定一组团聚体约5 min),且测定结果区分度较好(约62%的团聚体MLR位于区分度良好的40%~60%区间),将其作为SVD法的最优测定方案。此外,SVD法试验装置结构简单、便携易拆卸,可用于原位快速且定量地区分火烧迹地不同火烈度下土壤团聚体稳定性水平,对火烧迹地土壤侵蚀、水土流失治理以及火后泥石流起动机理研究具有重要指导意义。