Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril...Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-v...In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.展开更多
Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing...Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.展开更多
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 7137/03E and R7005/01E)。
文摘Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
基金supported by the National Natural Science Foundation of China(No.52007138)the Natural Science Basis Research Plan in Shaanxi Province of China(No.2022JQ-568)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-069).
文摘In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.
基金This work was supported by the Natural Science Foundation of Jilin Province(YDZj202101ZYTS143)National Key Research and Development Project of China(project No.2018YFC1505303).
文摘Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.