A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT...A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.展开更多
An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its imple...An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two- component Richtmyer-Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods.展开更多
As one of the most promising propulsion systems in the future,shock-induced combustion ramjet engine can remedy the disadvantages in the integrated design of scramjet engine and airframe.It can shorten the length of t...As one of the most promising propulsion systems in the future,shock-induced combustion ramjet engine can remedy the disadvantages in the integrated design of scramjet engine and airframe.It can shorten the length of the combustor,lighten the structure weight of the engine and keep better performance in a broad range of flight Mach number.The elementary principle of shock-induced combustion ramjet engine is introduced.The key technologies of this kind of propulsion system are described,while their research status is presented in detail.Suggestion on the development of shcramjet engine in China is put forward.展开更多
A comprehensive methodology for simulating 2 D dynamic stall at fluctuating freestream is proposed in this paper.2 D CFD simulation of a SC1095 airfoil exposed to a fluctuating freestream of Mach number 0.537±0.2...A comprehensive methodology for simulating 2 D dynamic stall at fluctuating freestream is proposed in this paper.2 D CFD simulation of a SC1095 airfoil exposed to a fluctuating freestream of Mach number 0.537±0.205 and Reynolds number 6.1×10~6(based on the mean Mach number)and undergoing a 10°±10°pitch oscillation with a frequency of 4.25 Hz was conducted.These conditions were selected to be representative of the flow experienced by a helicopter rotor airfoil section in a real-life fast forward flight.Both constant freestream dynamic stall as well as fluctuating freestream dynamic stall simulations were conducted and compared.The methodology was carefully validated with experimental data for both transonic flow and dynamic stall under fluctuating freestream.Overall,the results suggest that the fluctuating freestream alters the dynamic stall mechanism documented for constant freestream in a major way,emphasizing that inclusion of this effect in the prediction of dynamic stall related rotor loads is imperative for rotor performance analysis and blades design.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ...Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.展开更多
Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can ...Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.展开更多
The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that ...The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that particle migration across the boundary layer leads to intersections of particle trajectories. The corresponding modification of dusty gas model is proposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at a constant speed are obtained by using the method of matched asymptotic expansions. The method of the calculation of particle phase parameters in Lagrangian coordinates is described in detail. Some numerical results for the case of small particle concentration are given.展开更多
Shock metamorphism resulting from hyperveloeity collisions between planetary bodies, is a fundamental processes in the solar system. The term "shock metamorphism" is used to describe all changes in rocks and mineral...Shock metamorphism resulting from hyperveloeity collisions between planetary bodies, is a fundamental processes in the solar system. The term "shock metamorphism" is used to describe all changes in rocks and minerals resulting from the passage of shock waves. Most meteorites have experienced coUisions and have a record of shock metamorphism, which includes brecciation, deformation, phase transformation, local melting and crystallization. The key to reading this record is to use the shock features to estimate the pressure and duration of shock event. In this paper, the history of the study of shock metamorphism is reviewed; basic knowledge of shock physics is discussed; recent 10 years' studies of shock-induced melt veins are summarized; and finally a short note to the shock metamorphism in general is given.展开更多
The measurement of emissions from the window material of sapphire was performed through multi-wavelength pyrometer and spontaneous spectroscopic techniques in the pressure range of 40 -120 GPa. The results showed that...The measurement of emissions from the window material of sapphire was performed through multi-wavelength pyrometer and spontaneous spectroscopic techniques in the pressure range of 40 -120 GPa. The results showed that the spectral distribution with wavelength clearly fit well with the grey-body spectrum. We have analyzed the emissions and discovered they mostly came from the shear banding, which is a typical thermal radiation. The radiance intensity changing linearly with time revealed it was a volume effect. All of the data from pyrometer can be explained by the model of Boslough's study, especially for pres- sures over megabar. The color temperature of shocked sapphire changing with increased stress disagrees with the computed melt curve which is likely explained by the differcnt phase structures of sapphire.展开更多
基金the National Natural Science Foundation of China (Grant No.12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (Grant No.QNKT22-09)。
文摘A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10732010,10972010,and 11028206)the Opening Project of State Key Laboratory of Explosion Science and Technology,China (Grant No.KFJJ13-5M)
文摘An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two- component Richtmyer-Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods.
基金supported by the National Natural Science Foundation of China (Grant No.90816016)the Excellent Student Innovative Project of National University of Defense Technology (Grant No.B070101)the Hunan Provincial Innovation Foundation for Postgraduate (Grant No.3206)
文摘As one of the most promising propulsion systems in the future,shock-induced combustion ramjet engine can remedy the disadvantages in the integrated design of scramjet engine and airframe.It can shorten the length of the combustor,lighten the structure weight of the engine and keep better performance in a broad range of flight Mach number.The elementary principle of shock-induced combustion ramjet engine is introduced.The key technologies of this kind of propulsion system are described,while their research status is presented in detail.Suggestion on the development of shcramjet engine in China is put forward.
文摘A comprehensive methodology for simulating 2 D dynamic stall at fluctuating freestream is proposed in this paper.2 D CFD simulation of a SC1095 airfoil exposed to a fluctuating freestream of Mach number 0.537±0.205 and Reynolds number 6.1×10~6(based on the mean Mach number)and undergoing a 10°±10°pitch oscillation with a frequency of 4.25 Hz was conducted.These conditions were selected to be representative of the flow experienced by a helicopter rotor airfoil section in a real-life fast forward flight.Both constant freestream dynamic stall as well as fluctuating freestream dynamic stall simulations were conducted and compared.The methodology was carefully validated with experimental data for both transonic flow and dynamic stall under fluctuating freestream.Overall,the results suggest that the fluctuating freestream alters the dynamic stall mechanism documented for constant freestream in a major way,emphasizing that inclusion of this effect in the prediction of dynamic stall related rotor loads is imperative for rotor performance analysis and blades design.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金supported by the National Natural Science Foundation of China, [Award number: 11972372] and [Award number: U20A20231]。
文摘Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.
基金the Fundamental Research Funds for the Central Universities(No.30920021108)Open Foundation of Hypervelocity Impact Research Center of CARDC(20200106).
文摘Reactive Materials(RMs),a new material with structural and energy release characteristics under shockinduced chemical reactions,are promising in extensive applications in national defense and military fields.They can increase the lethality of warheads due to their dual functionality.This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading.Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs,temperature distribution,peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material(RM)warhead casings by using high-speed camera,infrared thermal imager temperature and peak overpressure testing and scanning electron microscope.Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings.The RM casings can improve the peak overpressure of the air shock wave under explosion loading,though the results are different with different charge ratios.According to the energy release characteristics of the RM,increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave,while reducing the thickness will increase the peak overpressure of the far-field air shock wave.
文摘The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that particle migration across the boundary layer leads to intersections of particle trajectories. The corresponding modification of dusty gas model is proposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at a constant speed are obtained by using the method of matched asymptotic expansions. The method of the calculation of particle phase parameters in Lagrangian coordinates is described in detail. Some numerical results for the case of small particle concentration are given.
文摘Shock metamorphism resulting from hyperveloeity collisions between planetary bodies, is a fundamental processes in the solar system. The term "shock metamorphism" is used to describe all changes in rocks and minerals resulting from the passage of shock waves. Most meteorites have experienced coUisions and have a record of shock metamorphism, which includes brecciation, deformation, phase transformation, local melting and crystallization. The key to reading this record is to use the shock features to estimate the pressure and duration of shock event. In this paper, the history of the study of shock metamorphism is reviewed; basic knowledge of shock physics is discussed; recent 10 years' studies of shock-induced melt veins are summarized; and finally a short note to the shock metamorphism in general is given.
基金support provided by the National Natural Science Foundation of China (Grant Nos. 10874141,10974160 and 10299040)the Foundation of Center Universities (Grant No.SWJTU112T23)
文摘The measurement of emissions from the window material of sapphire was performed through multi-wavelength pyrometer and spontaneous spectroscopic techniques in the pressure range of 40 -120 GPa. The results showed that the spectral distribution with wavelength clearly fit well with the grey-body spectrum. We have analyzed the emissions and discovered they mostly came from the shear banding, which is a typical thermal radiation. The radiance intensity changing linearly with time revealed it was a volume effect. All of the data from pyrometer can be explained by the model of Boslough's study, especially for pres- sures over megabar. The color temperature of shocked sapphire changing with increased stress disagrees with the computed melt curve which is likely explained by the differcnt phase structures of sapphire.