GeSi source/drain structure is purposefully adopted in SOI p MOSFET's to suppress the short channel effect (SCE).The impact of GeSi material (as source only,drain only or both source and drain) on the threshold v...GeSi source/drain structure is purposefully adopted in SOI p MOSFET's to suppress the short channel effect (SCE).The impact of GeSi material (as source only,drain only or both source and drain) on the threshold voltage rolling off and DIBL effect is thoroughly investigated,as well as the influence of the Ge concentration and silicon film thickness.The Ge concentration should be carefully chosen as a tradeoff between the driving current and SCE improvement.The detailed physics is explained.展开更多
Hot carriers injection (HCI) tests for ultra-short channel n-MOSFET devices were studied. The experimental data of short channel devices (75-90 nm), which does not fit formal degradation power law well, will bring...Hot carriers injection (HCI) tests for ultra-short channel n-MOSFET devices were studied. The experimental data of short channel devices (75-90 nm), which does not fit formal degradation power law well, will bring severe error in lifetime prediction. This phenomenon usually happens under high drain voltage (Vd) stress condition. A new model was presented to fit the degradation curve better. It was observed that the peak of the substrate current under low drain voltage stress cannot be found in ultra-short channel device. Devices with different channel lengths were studied under different Vd stresses in order to understand the relations between peak of substrate current (/sub) and channel length/stress voltage.展开更多
This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole em...This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.展开更多
An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented...An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLASTM 2D device simulator.展开更多
In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along wit...In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS;device simulator to affirm and formalize the proposed device structure.展开更多
An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used...An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used for design and fabrication and physical library development of thin film submicron and deep submicron CMOS/ SOI integrated circuit.展开更多
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state...An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.展开更多
This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel.For the analysis,three different channel structures are used:(a)tri-layer stack chan...This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel.For the analysis,three different channel structures are used:(a)tri-layer stack channel(TLSC)(Si-SiGe-Si),(b)double layer stack channel(DLSC)(SiGe-Si),(c)single layer channel(SLC)(S_(i)).The I−V characteristics,subthreshold swing(SS),drain-induced barrier lowering(DIBL),threshold voltage(V_(t)),drain current(ION),OFF current(IOFF),and ON-OFF current ratio(ION/IOFF)are observed for the structures at a 20 nm gate length.It is seen that TLSC provides 21.3%and 14.3%more ON current than DLSC and SLC,respectively.The paper also explores the analog and RF factors such as input transconductance(g_(m)),output transconductance(gds),gain(gm/gds),transconductance generation factor(TGF),cut-off frequency(f_(T)),maximum oscillation frequency(f_(max)),gain frequency product(GFP)and linearity performance parameters such as second and third-order harmonics(g_(m2),g_(m3)),voltage intercept points(VIP_(2),VIP_(3))and 1-dB compression points for the three structures.The results show that the TLSC has a high analog performance due to more gm and provides 16.3%,48.4%more gain than SLC and DLSC,respectively and it also provides better linearity.All the results are obtained using the VisualTCAD tool.展开更多
绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了...绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了基于0.15μm SOI工艺的1.5 V MOS器件电特性在高温下的退化机理和抑制方法,通过增加栅氧厚度、降低阱浓度、调整轻掺杂漏离子注入工艺等优化方法,实现了一种性能良好的短沟道高温SOI CMOS器件,在25~250℃温度范围内,该器件阈值电压漂移量<30%,饱和电流漂移量<15%,漏电流<1 nA/μm。此外采用仿真的方法分析了器件在高温下的漏区电势和电场的变化规律,将栅诱导漏极泄漏电流效应与器件高温漏电流关联起来,从而定性地解释了SOI短沟道器件高温漏电流退化的机理。展开更多
提出了一种适用于超短距离(Very Short Reach,VSR)信道、面向112 Gb/s PAM4(Pulse Amplitude Modulation 4)接收机的自适应均衡设计方案。在该方案中,接收机前端利用3个连续时间线性均衡器(Continuous Time Linear Equalizer,CTLE)对信...提出了一种适用于超短距离(Very Short Reach,VSR)信道、面向112 Gb/s PAM4(Pulse Amplitude Modulation 4)接收机的自适应均衡设计方案。在该方案中,接收机前端利用3个连续时间线性均衡器(Continuous Time Linear Equalizer,CTLE)对信号分别在高频、中频和低频进行补偿,可变增益放大器(Variable Gain Amplifier,VGA)和饱和放大器(Saturation Amplifier,SatAmp)则用于对信号幅值的缩放。除了3个数据采样器外,引入4个辅助采样器用于进一步改善阈值自适应算法性能。同时,采用符号最小均方算法,利用接收端数据采样器和辅助采样器之间的偏移推动辅助参考电压收敛到信号星座电平,从而确保PAM4接收信号的眼图在垂直方向上3个眼睛具有相等的间隔和恒定的信噪比(Signal-to-Noise Ratio,SNR)。仿真结果表明,所提出的112 Gb/s PAM4接收机能够在损耗为15 dB的信道上实现小于10~(-12)的误码率,并且具有良好的眼图性能,其最差眼高为75 mV,眼宽为0.34 UI(Unit Interval),与传统方案相比具有显著的性能提升。展开更多
文摘GeSi source/drain structure is purposefully adopted in SOI p MOSFET's to suppress the short channel effect (SCE).The impact of GeSi material (as source only,drain only or both source and drain) on the threshold voltage rolling off and DIBL effect is thoroughly investigated,as well as the influence of the Ge concentration and silicon film thickness.The Ge concentration should be carefully chosen as a tradeoff between the driving current and SCE improvement.The detailed physics is explained.
基金Project supported by the National Natural Science Foundation of China (Grant No 60376024).
文摘Hot carriers injection (HCI) tests for ultra-short channel n-MOSFET devices were studied. The experimental data of short channel devices (75-90 nm), which does not fit formal degradation power law well, will bring severe error in lifetime prediction. This phenomenon usually happens under high drain voltage (Vd) stress condition. A new model was presented to fit the degradation curve better. It was observed that the peak of the substrate current under low drain voltage stress cannot be found in ultra-short channel device. Devices with different channel lengths were studied under different Vd stresses in order to understand the relations between peak of substrate current (/sub) and channel length/stress voltage.
文摘This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.
文摘An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLASTM 2D device simulator.
文摘In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS;device simulator to affirm and formalize the proposed device structure.
文摘An 'Integrated Device and Circuit simulator' for thin film (0.05-0.2μm) submicron (0.5μm) and deep submicron (0.15, 0.25,0.35μm) CMOS/ SOI integrated circuit has been developed. This simulator has been used for design and fabrication and physical library development of thin film submicron and deep submicron CMOS/ SOI integrated circuit.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea under Grant No 2011-0004949
文摘An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.
文摘This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel.For the analysis,three different channel structures are used:(a)tri-layer stack channel(TLSC)(Si-SiGe-Si),(b)double layer stack channel(DLSC)(SiGe-Si),(c)single layer channel(SLC)(S_(i)).The I−V characteristics,subthreshold swing(SS),drain-induced barrier lowering(DIBL),threshold voltage(V_(t)),drain current(ION),OFF current(IOFF),and ON-OFF current ratio(ION/IOFF)are observed for the structures at a 20 nm gate length.It is seen that TLSC provides 21.3%and 14.3%more ON current than DLSC and SLC,respectively.The paper also explores the analog and RF factors such as input transconductance(g_(m)),output transconductance(gds),gain(gm/gds),transconductance generation factor(TGF),cut-off frequency(f_(T)),maximum oscillation frequency(f_(max)),gain frequency product(GFP)and linearity performance parameters such as second and third-order harmonics(g_(m2),g_(m3)),voltage intercept points(VIP_(2),VIP_(3))and 1-dB compression points for the three structures.The results show that the TLSC has a high analog performance due to more gm and provides 16.3%,48.4%more gain than SLC and DLSC,respectively and it also provides better linearity.All the results are obtained using the VisualTCAD tool.
文摘绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了基于0.15μm SOI工艺的1.5 V MOS器件电特性在高温下的退化机理和抑制方法,通过增加栅氧厚度、降低阱浓度、调整轻掺杂漏离子注入工艺等优化方法,实现了一种性能良好的短沟道高温SOI CMOS器件,在25~250℃温度范围内,该器件阈值电压漂移量<30%,饱和电流漂移量<15%,漏电流<1 nA/μm。此外采用仿真的方法分析了器件在高温下的漏区电势和电场的变化规律,将栅诱导漏极泄漏电流效应与器件高温漏电流关联起来,从而定性地解释了SOI短沟道器件高温漏电流退化的机理。