Based on classical circuit theory, this article develops a general analytic solution of the telegrapher’s equations, in which the length of the cable is explicitly contained as a freely adjustable parameter. For this...Based on classical circuit theory, this article develops a general analytic solution of the telegrapher’s equations, in which the length of the cable is explicitly contained as a freely adjustable parameter. For this reason, the solution is also applicable to electrically short cables. Such a model has become indispensable because a few months ago, it was experimentally shown that voltage fluctuations in ordinary but electrically short copper lines move at signal velocities that are significantly higher than the speed of light in a vacuum. This finding contradicts the statements of the special theory of relativity but not, as is shown here, the fundamental principles of electrical engineering. Based on the general transfer function of a transmission line, the article shows mathematically that an unterminated, electrically short cable has the characteristics of an ideal delay element, meaning that an input signal appears at the output with a slight delay but remains otherwise unchanged. Even for conventional cables, the time constants can be so small that the corresponding signal velocities can significantly exceed the speed of light in a vacuum. The article also analyses the technical means with which this effect can be conveyed to very long cables.展开更多
Compact microstrip antennas have recently received much attention due to the increasing demand of small antennas for personal communication equipment. The problem of achieving a wide impedance bandwidth for compact mi...Compact microstrip antennas have recently received much attention due to the increasing demand of small antennas for personal communication equipment. The problem of achieving a wide impedance bandwidth for compact microstrip antennas is becoming an important topic in microstrip antenna design. In this paper the design and development of a 2 × 1 array of a low cost slotted microstrip line fed shorted patch antenna (MFSPA) has been presented. Both the shorted patch and microstrip line feed network have air substrate. The material cost is thus reduced to a minimum. The array consists of two adjacent patches fed, using a simple microstrip T network. The impedance bandwidth of nearly 40%, covering the bandwidth requirement of 1750 MHz band is obtained. Also the antenna exhibits dual band operation. The cross polarization radiation in H-Plane observed with a single element antenna has been reduced considerably with 2 × 1 array. A peak antenna gain of 9.2 dBi is obtained with a small variation of 0.8 dBi. From the results obtained it is clear that the antenna array studied has a low cost fabrication and is suitable for applications in DCS mobile communication base station.展开更多
文摘Based on classical circuit theory, this article develops a general analytic solution of the telegrapher’s equations, in which the length of the cable is explicitly contained as a freely adjustable parameter. For this reason, the solution is also applicable to electrically short cables. Such a model has become indispensable because a few months ago, it was experimentally shown that voltage fluctuations in ordinary but electrically short copper lines move at signal velocities that are significantly higher than the speed of light in a vacuum. This finding contradicts the statements of the special theory of relativity but not, as is shown here, the fundamental principles of electrical engineering. Based on the general transfer function of a transmission line, the article shows mathematically that an unterminated, electrically short cable has the characteristics of an ideal delay element, meaning that an input signal appears at the output with a slight delay but remains otherwise unchanged. Even for conventional cables, the time constants can be so small that the corresponding signal velocities can significantly exceed the speed of light in a vacuum. The article also analyses the technical means with which this effect can be conveyed to very long cables.
文摘Compact microstrip antennas have recently received much attention due to the increasing demand of small antennas for personal communication equipment. The problem of achieving a wide impedance bandwidth for compact microstrip antennas is becoming an important topic in microstrip antenna design. In this paper the design and development of a 2 × 1 array of a low cost slotted microstrip line fed shorted patch antenna (MFSPA) has been presented. Both the shorted patch and microstrip line feed network have air substrate. The material cost is thus reduced to a minimum. The array consists of two adjacent patches fed, using a simple microstrip T network. The impedance bandwidth of nearly 40%, covering the bandwidth requirement of 1750 MHz band is obtained. Also the antenna exhibits dual band operation. The cross polarization radiation in H-Plane observed with a single element antenna has been reduced considerably with 2 × 1 array. A peak antenna gain of 9.2 dBi is obtained with a small variation of 0.8 dBi. From the results obtained it is clear that the antenna array studied has a low cost fabrication and is suitable for applications in DCS mobile communication base station.