Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env...Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN.展开更多
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll...The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.展开更多
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions...A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions, and a database is established containing the important parameters including the inflow wind conditions, the flow fields and the corresponding wind power for each wind turbine. The power is predicted via the database by taking the Numerical Weather Prediction (NWP) wind as the input data. In order to evaluate the approach, the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010. Compared with the measured power, the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%. A good performance is shown in predicting the wind power's changing trend. This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms. At the same time, it does not take much computation time while it captures the local air flows more precisely by the CFD model. So it is especially practical for engineering projects.展开更多
针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析...针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析法(analytic hierarchy process, AHP)的评估结构中,构建BP-AHP风机状态评估模型,实现单台风机状态评估;然后,综合考虑地形及机组排布等因素,将风电场所有风机的状态取均值作为风电场状态,利用皮尔逊相关系数衡量所评估状态与功率之间的相关性以验证评估模型合理性,并采用XGBoost构建计及风机状态的动态预测模型;最后,以陕西地区某风电场实测数据进行算例分析,验证了所提方法的可行性及有效性。展开更多
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测...精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。展开更多
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
文摘Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN.
文摘The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
基金Project supported by the National Natural Science Foundation of China(Grant No. 51206051)
文摘A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions, and a database is established containing the important parameters including the inflow wind conditions, the flow fields and the corresponding wind power for each wind turbine. The power is predicted via the database by taking the Numerical Weather Prediction (NWP) wind as the input data. In order to evaluate the approach, the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010. Compared with the measured power, the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%. A good performance is shown in predicting the wind power's changing trend. This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms. At the same time, it does not take much computation time while it captures the local air flows more precisely by the CFD model. So it is especially practical for engineering projects.
文摘精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。