期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Traffic flow prediction of urban road network based on LSTM-RF model 被引量:3
1
作者 ZHAO Shu-xu ZHANG Bao-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期135-142,共8页
Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth... Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model. 展开更多
关键词 traffic flow prediction long short time memory and random forest(LSTM-RF)model random forest combination model spatial-temporal correlation
下载PDF
基于DACO-Bi-LSTM的交通流量预测
2
作者 郭金城 潘伟民 《信息技术》 2024年第5期8-14,21,共8页
针对交通流量预测任务存在预测精度低、泛化性不足且对深度学习模型调参不全面等问题,提出了一种基于改进蚁群优化算法的双向LSTM交通流量预测模型,利用改进蚁群算法的全局寻优能力对Bi-LSTM网络的层数、神经元个数、批次大小、训练次... 针对交通流量预测任务存在预测精度低、泛化性不足且对深度学习模型调参不全面等问题,提出了一种基于改进蚁群优化算法的双向LSTM交通流量预测模型,利用改进蚁群算法的全局寻优能力对Bi-LSTM网络的层数、神经元个数、批次大小、训练次数进行优化调参。在英国高速公路和深圳政府开放平台发布的宝安区日车流量两个公开数据集上进行实验,以RMSE、MAE为评估指标,结果表明:DACO-Bi-LSTM模型具有较强的寻优能力,同时表现出更好的预测性能。 展开更多
关键词 交通流量预测 蚁群算法优化 双向长短时记忆网络 模型调参
下载PDF
基于GA-Elman神经网络的交通流短时预测方法 被引量:13
3
作者 张秋余 朱学明 《兰州理工大学学报》 CAS 北大核心 2013年第3期94-98,共5页
以单断面的交通流量为研究对象,采用动态Elman神经网络进行短时交通流量的预测,提出一种基于GA-Elman神经网络的交通流短时预测方法.该方法通过遗传算法优化Elman神经网络的权值和阈值,克服了Elman神经网络易陷入局部最小的缺陷,同时提... 以单断面的交通流量为研究对象,采用动态Elman神经网络进行短时交通流量的预测,提出一种基于GA-Elman神经网络的交通流短时预测方法.该方法通过遗传算法优化Elman神经网络的权值和阈值,克服了Elman神经网络易陷入局部最小的缺陷,同时提高了Elman神经网络的泛化能力和预测精度.实验仿真表明,本文方法可用于城市快速路上预测实时交通流量,预测效果优于Elman、GA-BP预测模型. 展开更多
关键词 智能交通 交通流短时预测 遗传算法 ELMAN神经网络
下载PDF
基于AFSA-LSSVM的短时交通流量预测 被引量:10
4
作者 刘静 《计算机工程与应用》 CSCD 2013年第17期226-229,共4页
为了提高短时交通流量的预测精度,针对最小二乘支持向量机(LSSVM)参数优化难题,提出一种人工鱼群算法(AFSA)和LSSVM相结合的短时交流量预测模型(AFSA-LSSVM),通过采用AFSA优化LSSVM参数,并采用具体短时交通流量数据进行仿真实验。仿真... 为了提高短时交通流量的预测精度,针对最小二乘支持向量机(LSSVM)参数优化难题,提出一种人工鱼群算法(AFSA)和LSSVM相结合的短时交流量预测模型(AFSA-LSSVM),通过采用AFSA优化LSSVM参数,并采用具体短时交通流量数据进行仿真实验。仿真结果表明,相对于参比模型,AFSA-LSSVM可以获得更优的LSSVM参数,能够更加准确地描述短时交通流量变化趋势,提高了短时交通量的预测精度,为非线性短时交通流量预测提供了一种新的研究思路。 展开更多
关键词 短时交通流量 最小二乘支持向量机 人工鱼群算法 时间序列
下载PDF
一种LS-SVM在线式短时交通流预测方法 被引量:14
5
作者 康军 段宗涛 +1 位作者 唐蕾 温兴超 《计算机应用研究》 CSCD 北大核心 2018年第10期2965-2968,共4页
针对短时交通流在线预测时存在的计算复杂性问题,提出了一种最小二乘支持向量机在线式短时交通流预测方法。该方法简化了在线学习过程中Lagrange乘子的求解过程,利用训练数据集滑动时间窗口的移动来控制新样本的加入和旧样本的移除,通... 针对短时交通流在线预测时存在的计算复杂性问题,提出了一种最小二乘支持向量机在线式短时交通流预测方法。该方法简化了在线学习过程中Lagrange乘子的求解过程,利用训练数据集滑动时间窗口的移动来控制新样本的加入和旧样本的移除,通过线性运算完成Lagrange乘子的更新,进而完成预测模型的在线更新。测试结果表明,相对已有方法,所提方法在保证预测精度的条件下,能够将在线模型更新时间平均降低约62.64%,是一种有效的在线式短时交通流预测方法。 展开更多
关键词 短时交通流预测 统计学习 最小二乘支持向量机 在线式学习算法 滑动时间窗口
下载PDF
基于多维时空的NPCA-PSR-IGM(1,1)组合模型的短时交通流预测 被引量:3
6
作者 殷礼胜 高贺 +2 位作者 魏帅康 孙双晨 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2021年第4期1035-1041,共7页
针对城市短时交通流序列非线性和混沌性的特点,为提高短时交通流的预测精度,该文提出一种基于多维时空的非线性主成分分析(NPCA)和相空间重构(PSR)的改进灰色(IGM(1,1))组合预测模型。首先,使用数据相关性的非线性主成分分析算法对多维... 针对城市短时交通流序列非线性和混沌性的特点,为提高短时交通流的预测精度,该文提出一种基于多维时空的非线性主成分分析(NPCA)和相空间重构(PSR)的改进灰色(IGM(1,1))组合预测模型。首先,使用数据相关性的非线性主成分分析算法对多维交通流量序列进行时空降维,同时保留影响预测点的主要交通流量数据,从而提高建模的精确度;其次,利用多维时空交通流量序列相空间重构放大交通流量内部的细微特征,以使其内在规律得以充分展现,进一步提升预测精度;最后,结合背景值改进的灰色模型适应于线性、非线性以及所需数据少的特点,进行短时交通流预测。实验结果表明,NPCA-PSR-IGM(1,1)组合预测模型的平均相对误差相比NPCA-PSR-GM(1,1)组合预测模型减小3.12%,其标准偏差相对PCA-PSR-IGM(1,1)组合预测模型从15.7091下降到2.0589。同时与最新的预测模型相比,该组合预测模型也提高了预测精度,达到了较好的预测效果。 展开更多
关键词 短时交通流预测 多维时空 非线性主成分分析 相空间重构 改进灰色模型
下载PDF
基于GA-SVR模型的短期交通流量预测方法研究 被引量:17
7
作者 韩志聪 樊彦国 +1 位作者 吴会胜 刘惠燕 《公路交通科技》 CAS CSCD 北大核心 2017年第1期130-136,共7页
为了提高短期交通流预测精度,寻求最优交通流分组策略,通过对短期历史交通流量数据的分析,运用遗传算法优化支持向量回归机的惩罚参数、核函数参数和不敏感损失函数3个参数,构建了GA-SVR模型。首先对采集的数据采用算术平均值进行了降... 为了提高短期交通流预测精度,寻求最优交通流分组策略,通过对短期历史交通流量数据的分析,运用遗传算法优化支持向量回归机的惩罚参数、核函数参数和不敏感损失函数3个参数,构建了GA-SVR模型。首先对采集的数据采用算术平均值进行了降噪处理,然后根据交通数据特征分为连续5个星期五时间、相邻前5个工作日和当天3种时间周期序列,通过不同时间周期序列确定了最优的训练样本集。最后结合采集的数据进行了验证,并且与传统SVR模型进行了精度对比。结果表明:GA-SVR模型预测精度优于传统SVR模型,且基于当天数据构建的训练样本集总体预测精度最高。 展开更多
关键词 交通工程 交通流分组策略 遗传-支持向量回归模型 短期交通流量 预测参数
下载PDF
基于时间序列与BP-ANN的短时交通流速度预测模型研究 被引量:21
8
作者 田瑞杰 张维石 翟华伟 《计算机应用研究》 CSCD 北大核心 2019年第11期3262-3265,3329,共5页
针对现有的交通流速度预测模型使用唯一数据集且模型单一的问题,提出一种时间序列与人工神经网络相结合的预测模型。该模型通过时间序列分别对实时数据和历史数据建模预测,并应用人工神经网络调整实时数据和历史数据的预测值。实验结果... 针对现有的交通流速度预测模型使用唯一数据集且模型单一的问题,提出一种时间序列与人工神经网络相结合的预测模型。该模型通过时间序列分别对实时数据和历史数据建模预测,并应用人工神经网络调整实时数据和历史数据的预测值。实验结果表明该预测模型能够将预测误差控制在7%以内,且能够对不同输入参数下的短时交通流速度进行有效预测。 展开更多
关键词 时间序列 人工神经网络 短时预测 交通流速度
下载PDF
基于WPD-PSO-ESN的短期交通流预测 被引量:15
9
作者 万玉龙 李新春 周红标 《公路交通科技》 CAS CSCD 北大核心 2019年第8期144-151,共8页
为了提高短期交通流的预测精度,提出了一种基于小波包分解(wavelet packet decomposition,WPD)、粒子群优化(particle swarm optimization,PSO)算法和回声状态网(echo state network,ESN)的短期交通流预测方法。该方法命名为WPD-PSO-ES... 为了提高短期交通流的预测精度,提出了一种基于小波包分解(wavelet packet decomposition,WPD)、粒子群优化(particle swarm optimization,PSO)算法和回声状态网(echo state network,ESN)的短期交通流预测方法。该方法命名为WPD-PSO-ESN。首先,在数据预处理阶段,采用小波包分解将交通流数据分解为不同频段的子序列,并将各子序列送入回声状态网预测模型;然后,在建立预测模型阶段,利用粒子群优化算法在线优化回声状态网的参数,以提高回声状态网的泛化能力和预测精度;进一步,针对粒子群优化算法存在的早熟收敛和易陷入局部最优的缺陷,通过检测粒子飞行过程中的状态信息,设计了惯性权重自适应调整策略,以期提高粒子群优化算法的寻优能力;最后,在结果输出阶段,采用加权平均法融合各子序列的预测值以得到模型的最终预测结果。试验结果表明:通过小波包分解和单支重构可以更加容易地抓住原始信号中的动态信息,更适合用于回声状态网的时间序列建模;带有自适应惯性权重调整策略的粒子群优化算法具备更强的跳出局部最优的能力,优化后的回声状态网模型精度更高;对于短期交通流预测,与前馈型误差反传神经网络、反馈型Elman神经网络和传统回声状态网等预测方法相比,WPD-PSO-ESN预测方法具有更高的预测精度,能够满足智能交通系统对预测精度的需求,对实现实时交通控制和建设智能交通系统具有重要意义。 展开更多
关键词 城市交通 时间序列预测 回声状态网络 小波包分解 粒子群优化 短期交通流
下载PDF
基于LSTM-BP组合模型的短时交通流预测 被引量:14
10
作者 李明明 雷菊阳 赵从健 《计算机系统应用》 2019年第10期152-156,共5页
为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模... 为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模型框架,借助Matlab完成从数据的处理到模型的仿真,实现基于LSTMBP的短时交通流精确预测.通过与LSTM\BP\WNN三种预测网络模型的对比,结果表明LSTM-BP预测的时间序列具有较高的精度和稳定性.该模型的搭建,可对交通分布的预测、交通方式的划分、实时交通流的分配提供依据和参考. 展开更多
关键词 智能交通系统 LSTM-BP模型 时间序列 短时交通流预测
下载PDF
基于EMD-LSTM神经网络的交通流量预测模型 被引量:3
11
作者 曾阳艳 苏雅 张琪慧 《商学研究》 2021年第3期110-115,共6页
针对城市交通流序列非线性、周期性、随机性以及原始数据常还包含一些噪声的特点,为了提高交通流量预测精度,本文提出了一种能够去噪且能处理长时依赖问题的组合预测算法--EMD-LSTM。首先,通过经验模态分解(EMD)算法将交通时序数据中不... 针对城市交通流序列非线性、周期性、随机性以及原始数据常还包含一些噪声的特点,为了提高交通流量预测精度,本文提出了一种能够去噪且能处理长时依赖问题的组合预测算法--EMD-LSTM。首先,通过经验模态分解(EMD)算法将交通时序数据中不同尺度分量逐级分解出来,生成一系列具有相同特征尺度的本征模函数,从而去除一定噪声影响;再利用长短期记忆(LSTM)神经网络解决数据的长期依赖问题,进一步提升预测精度。实验结果表明,EMD-LSTM组合模型在整体的交通流量预测和早高峰晚高峰交通流量预测中均取得了较好的结果。其中,在整体的交通流量预测中,EMD-LSTM组合预测模型的均方根误差(RMSE)比LSTM减少了5.325,平均绝对误差(MAE)比LSTM减少了3.942,平均绝对百分比误差(MAPE)比LSTM降低了5.61个百分点。 展开更多
关键词 交通时序数据 经验模态分解(EMD) 长短期记忆神经网络(LSTM) 交通流量预测
下载PDF
基于改进CS-WNN的短时交通流量预测 被引量:1
12
作者 赵明姣 张荣芬 刘宇红 《智能计算机与应用》 2020年第4期44-49,共6页
城市交通流量具有非线性变化以及不确定性等特点。为了提高城市交通流量的预测精度,提出一种改进的布谷鸟搜索算法优化小波神经网络(Improved Cuckoo Search-Wavelet Neural Network,ICS-WNN)预测模型。首先对交通流量原始数据进行降噪... 城市交通流量具有非线性变化以及不确定性等特点。为了提高城市交通流量的预测精度,提出一种改进的布谷鸟搜索算法优化小波神经网络(Improved Cuckoo Search-Wavelet Neural Network,ICS-WNN)预测模型。首先对交通流量原始数据进行降噪和归一化处理,再通过基于自适应步长和发现概率的布谷鸟算法优化小波神经网络权值和小波收缩、平移因子并添加神经网络动量因子,建立交通流量预测网络模型。实验仿真结果表明,ICS-WNN预测算法相比几种主流的优化预测算法具有更高的拟合度和精确度。 展开更多
关键词 小波神经网络 布谷鸟搜索算法 交通流量预测 自适应步长
下载PDF
基于WA-LSTM的短时交通流组合预测模型
13
作者 丁振雷 《黑龙江工程学院学报》 CAS 2023年第2期27-33,共7页
为解决一维短时交通流数据难以提取特征而造成预测精度低的问题,引入小波分解对传统LSTM模型进行改进,构建一种基于WA-LSTM的短时交通流组合预测模型。首先通过小波多尺度辨析将一维短时交通流时间序列数据分解为低频趋势分量和高频细... 为解决一维短时交通流数据难以提取特征而造成预测精度低的问题,引入小波分解对传统LSTM模型进行改进,构建一种基于WA-LSTM的短时交通流组合预测模型。首先通过小波多尺度辨析将一维短时交通流时间序列数据分解为低频趋势分量和高频细节分量,舍去最高频细节分量达到去噪效果;然后对剩余的分量使用LSTM进行建模和预测,将每个分量得到的预测结果重构,最终得到短时交通流预测结果;最后通过Pems系统实测数据对模型进行验证。研究结果表明,在以5 min为间隔的短时交通流预测中,WA-LSTM模型比传统BP、传统LSTM、WA-BP模型的预测精度更高。 展开更多
关键词 时间序列 短时交通流预测 小波分解 长短时记忆网络
下载PDF
基于深度学习的短时交通流预测方法综述与仿真研究 被引量:1
14
作者 朱仕威 叶宝林 吴维敏 《软件导刊》 2024年第2期182-193,共12页
近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短... 近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短时交通流预测方法能充分利用海量交通流数据,深入挖掘路网中不同交通节点间流量的隐藏特征与复杂时空关联,能有效提升预测短时交通流的精度。首先,简要回顾短时交通流预测方法的发展历史,重点分析、讨论基于深度学习模型的短时交通流预测方法最新技术进展和理论研究结果。其次,梳理、总结国内外广泛用于验证算法有效性和进行比较分析的公开交通流数据集。再次,阐述基于深度学习模型的短时交通流预测算法解决实际交通流预测问题的具体过程和详细步骤,基于公开测试数据集PEMS04分别对基于深度学习模型长短时记忆网络(LSTM)和门控循环单元(GRU)的短时交通流预测算法进行仿真研究,以验证算法的有效性及其相较于传统方法的优势。最后,总结、展望基于深度学习模型的短时交通流预测方法在实际应用中存在的挑战和未来研究方向。 展开更多
关键词 短时交通流预测 深度学习 时间序列 交通数据集 卷积神经网络
下载PDF
基于注意力卷积长短时记忆模型的城市出租车流量预测
15
作者 周新民 金江涛 +2 位作者 鲍娜娜 袁涛 崔烨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期153-162,共10页
为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效... 为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效提升交通时空特征的提取能力。同时,引入专门的学习元件考虑外部因素和POI密度对交通流量的影响,并利用北京市出租车轨迹数据验证。结果表明:ACLR模型在城市交通流预测中的精度高于差分自回归滑动平均(ARIMA)模型、长短时记忆(LSTM)网络、深度时空残差网络(ST-ResNet)、卷积神经网络(CNN)-残差神经单元-LSTM(CRL)循环神经网络、ACFM等模型,在无POI密度和考虑POI密度的情况下,均有助于提升模型的预测性能,ACLA模型的预测值与真实值基本一致,高峰时段也能与真实值较好地吻合,有效提升交通时空特征的提取能力,降低预测误差,使得交通流量预测性能得到优化。 展开更多
关键词 注意力卷积长短时记忆残差网络(ACLR)模型 交通流量预测 城市出租车 时空特征 残差结构
下载PDF
城市交叉口交通流特征与短时预测模型 被引量:23
16
作者 翁小雄 谭国贤 +1 位作者 姚树申 黄征 《交通运输工程学报》 EI CSCD 北大核心 2006年第1期103-107,共5页
时间尺度大于15 min的城市交通流预测模型已无法满足交通信号实时控制和交通信息实时发布的需求,通过对广州市中心区交叉路口交通流长期观察和数据采集,分析了各种时间尺度的交通流特性,提出以路口信号周期作为时间尺度,绿灯流率作为变... 时间尺度大于15 min的城市交通流预测模型已无法满足交通信号实时控制和交通信息实时发布的需求,通过对广州市中心区交叉路口交通流长期观察和数据采集,分析了各种时间尺度的交通流特性,提出以路口信号周期作为时间尺度,绿灯流率作为变量的ARIMA(p,d,q)短时交通预测模型。以1个和3个信号周期的时间尺度为例,对城市交叉路口不同时间段交通流进行建模和预测。结果表明ARIMA(p,d,q)预测模型结构稳定,算法简单,时间尺度为3个信号周期的预测模型可以很好地保持交通流特征,均方根误差为0.015 9,预测精度较高。 展开更多
关键词 交通工程 交通流特性 交通预测 短时间尺度 时间序列分析
下载PDF
基于ARIMA模型的短时交通流实时自适应预测 被引量:97
17
作者 韩超 宋苏 王成红 《系统仿真学报》 CAS CSCD 2004年第7期1530-1532,1535,共4页
实时、准确的短时交通流量预测是智能交通系统(ITS)中的一个关键问题。基于采用ARIMA(p,d,0)模型结构的时间序列分析方法,提出一种短时交通流实时自适应预测算法。在该算法中采用带遗忘因子的递推最小二乘方法进行参数估计,采用基于线... 实时、准确的短时交通流量预测是智能交通系统(ITS)中的一个关键问题。基于采用ARIMA(p,d,0)模型结构的时间序列分析方法,提出一种短时交通流实时自适应预测算法。在该算法中采用带遗忘因子的递推最小二乘方法进行参数估计,采用基于线性最小方差预报原理的Astrom预报算法进行预报。针对大量实测数据进行仿真实验,结果表明:减小遗忘因子可以提高一步预测的性能。此外,将该算法分别应用于工作日和双休日的数据时,仿真实验都取得了较好的预测效果,说明该算法对不同交通流状况具有较好的适应性。 展开更多
关键词 时间序列分析 ARIMA模型 短时交通流预测 自适应预测 实时预测
下载PDF
基于混沌粒子群优化小波神经网络的短时交通流预测 被引量:14
18
作者 沈永增 闫纪如 王炜 《计算机应用与软件》 CSCD 北大核心 2014年第6期84-86,90,共4页
根据交通流量的非线性、时变性和复杂性等特点,提出基于混沌粒子群CPSO(Chaos Particle Swarm Optimization)优化小波神经网络WNN(Wavelet Neural Networks)的短时交通流预测。结合混沌的随机性和遍历性改进粒子群优化算法,改善粒子群... 根据交通流量的非线性、时变性和复杂性等特点,提出基于混沌粒子群CPSO(Chaos Particle Swarm Optimization)优化小波神经网络WNN(Wavelet Neural Networks)的短时交通流预测。结合混沌的随机性和遍历性改进粒子群优化算法,改善粒子群优化算法容易陷入局部最优的问题。利用混沌粒子群算法优化小波神经网络的模型参数,克服传统小波神经网络采用梯度下降法易陷入局部极值和引起振荡效应现象缺陷。仿真结果表明,混沌粒子群优化小波神经网络与粒子群优化小波神经网络和小波神经网络两种方法相比,其提高了收敛速度和预测精度。 展开更多
关键词 混沌 粒子群 小波神经网络 短时交通流预测
下载PDF
基于ARIMA与人工神经网络组合模型的交通流预测 被引量:68
19
作者 谭满春 冯荦斌 徐建闽 《中国公路学报》 EI CAS CSCD 北大核心 2007年第4期118-121,共4页
将自回归求和滑动平均(ARIMA)与人工神经网络组合模型用于短时交通流预测。利用ARIMA模型良好的线性拟合能力和人工神经网络强大的非线性关系映射能力,把交通流时间序列看成由线性自相关结构和非线性结构两部分组成,采用ARIMA模型对交... 将自回归求和滑动平均(ARIMA)与人工神经网络组合模型用于短时交通流预测。利用ARIMA模型良好的线性拟合能力和人工神经网络强大的非线性关系映射能力,把交通流时间序列看成由线性自相关结构和非线性结构两部分组成,采用ARIMA模型对交通流序列的线性部分进行预测,用人工神经网络模型对其非线性残差部分进行预测。结果表明:组合模型的预测准确性高于各自单独使用时的准确性;组合方法发挥了2种模型各自的优势,是短期交通流预测的有效方法。 展开更多
关键词 交通工程 短期交通流预测 自回归求和滑动平均模型 人工神经网络 时间序列
下载PDF
基于投影寻踪自回归的短时交通流预测 被引量:18
20
作者 王晓原 刘海红 《系统工程》 CSCD 北大核心 2006年第3期20-24,共5页
及时准确地进行交通流短时预测是智能运通系统(ITS),尤其是其先进的交通管理系统(ATM S)与先进的出行者信息系统(AT IS)研究的关键内容之一。随着预测时间跨度的缩短,交通流量的变化显示出越来越强的不确定性,使得一般方法的预测精度大... 及时准确地进行交通流短时预测是智能运通系统(ITS),尤其是其先进的交通管理系统(ATM S)与先进的出行者信息系统(AT IS)研究的关键内容之一。随着预测时间跨度的缩短,交通流量的变化显示出越来越强的不确定性,使得一般方法的预测精度大大降低。例如:非参数回归的算法是一种“无参数”、可移植、高预测精度的实时预测算法,在交通流预测中发挥了很大的作用,但随着样本数据维数的增加,存在“维数祸根”的现象。针对目前短时交通流预测存在的问题,本文提出一种基于投影寻踪自回归技术的短时交通流预测模型,解决了“维数祸根”和高维数据间的非正态、非线性问题。经过实测数据验证,该算法完全满足实时交通流预测的需要。 展开更多
关键词 交通流 短时交通流预测 投影寻踪自回归 预测模型
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部