期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
Short-Term Precipitation Forecasting Rolling Update Correction Technology Based on Optimal Fusion Correction
1
作者 Meijin Huang Qing Lin +4 位作者 Ning Pan Nengzhu Fan Tao Jiang Qianshan He Lingguang Huang 《Journal of Geoscience and Environment Protection》 2019年第3期145-159,共15页
In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high... In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high resolution: the Severe Weather Automatic Nowcast System (SWAN) quantitative precipitation forecast and the High-Resolution Rapid Refresh (HRRR) regional numerical model precipitation forecast in short-term nowcasting aging. Based on the error analysis, the grid fusion technology is used to establish the measured rainfall, HRRR regional model precipitation forecast, and optical flow radar quantitative precipitation forecast (QPF) three-source fusion correction scheme, comprehensively integrate the revised forecasting effect, adjust the fusion correction parameters, establish an optimal correction plan, generate a frozen rolling update revised product based on measured dense data and short-term forecast, and put it into business operation, and perform real-time effect rolling test evaluation on the forecast product. 展开更多
关键词 OPTIMAL fusion CORRECTION Radar QPF Numerical Model short-TERM Precipitation Forecasting ROLLING Test
下载PDF
基于多模态唇部状态识别的语音导航抗干扰系统
2
作者 王晗 陈怡霖 +1 位作者 季钰姣 杜若琳 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期82-90,共9页
针对现有车载语音导航设备易受到车内外噪声干扰、无法准确判定声音信号来源的问题,提出了一种基于唇部状态识别的语音导航抗干扰系统.通过摄像头实时识别驾驶员唇部状态,准确判定驾驶员声音信号的起止时间端点,进而控制语音导航输入信... 针对现有车载语音导航设备易受到车内外噪声干扰、无法准确判定声音信号来源的问题,提出了一种基于唇部状态识别的语音导航抗干扰系统.通过摄像头实时识别驾驶员唇部状态,准确判定驾驶员声音信号的起止时间端点,进而控制语音导航输入信号开启和关闭,增强驾驶员对语音导航的控制权限,减少车内外的噪声干扰.为保证唇部状态识别的准确性和鲁棒性,提出了一种基于关键点-外观短时特征融合的多模态唇部状态识别网络,进行了关键点短时特征有效性试验、多模态特征融合的唇部状态识别消融试验、实验室模拟环境和真实车载环境下的语音导航抗干扰试验.结果表明,文中提出的关键点短时特征算子可增强唇部状态变化表征能力14%以上,关键点-外观特征融合的唇部状态识别网络通过特征互补提升识别准确性8.98%以上.基于该网络的语音导航抗干扰系统准确性高(92.6%)、实时性好(检测速度为35帧/s);在驾驶员左、右侧面超过70°的大幅度头部姿态变化下,能有效减少车内外噪声对导航语音控制的干扰,表现出较高的鲁棒性. 展开更多
关键词 语音导航抗干扰系统 唇部状态识别 关键点 外观特征 特征融合 长短期记忆网络
下载PDF
多间隔信息融合的母线保护电流互感器断线再开放策略 被引量:1
3
作者 陈琦 陈福锋 +4 位作者 唐治国 薛明军 刘凯祥 王胜 孙震宇 《电力自动化设备》 EI CSCD 北大核心 2024年第5期151-157,共7页
对于电流互感器(CT)断线后发生金属性故障的情景,现有母线保护采取的闭锁差动保护动作方式将会引发多个变电站停电。此外,当母线区内发生高阻接地故障时,现有母线保护判据可能会将其误判为CT断线故障,不利于电力系统的安全稳定运行。针... 对于电流互感器(CT)断线后发生金属性故障的情景,现有母线保护采取的闭锁差动保护动作方式将会引发多个变电站停电。此外,当母线区内发生高阻接地故障时,现有母线保护判据可能会将其误判为CT断线故障,不利于电力系统的安全稳定运行。针对这一问题,提出了一种母线保护CT断线再开放策略,该策略基于断线间隔与非断线间隔的零序电流变化量对负荷波动和故障进行区分,并基于非断线间隔的差流有效值和间隔失灵保护信息对区内外故障进行判别。实时数字仿真系统仿真结果验证了所提CT断线识别判据和再开放策略的正确性。 展开更多
关键词 电流互感器断线 多间隔信息融合 短路故障 电流互感器闭锁策略 母线保护
下载PDF
多层次特征融合与超图卷积的生成对抗壁画修复
4
作者 陈永 陶美风 赵梦雪 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期208-218,共11页
针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受... 针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受野,以克服单尺度卷积操作对于壁画特征提取能力不足的问题。然后,提出多分支短链融合层及门控机制融合多分支特征方法,将相邻分支间的特征信息进行融合,使融合后的壁画特征图中既有同分支的特征,又有相邻分支的特征,以提高特征信息的利用率;并引入门控机制对特征进行选择融合,以减少细节信息的丢失。接着,将融合特征通过卷积长短期记忆网络(ConvLSTM)特征注意力方法,增强对壁画上下文信息的关注。最后,设计超图卷积壁画长程特征增强模块,通过在编码器和解码器的跳跃连接之间建立超图卷积层,利用超图卷积捕获编码器的空间特征信息,并将其迁移到解码器中,有助于解码器更好地生成壁画图像,以加强特征的长程依赖关系,并与SN-PatchGAN判别器对抗博弈从而完成修复。通过敦煌壁画数字化修复实验,结果表明:所提方法客观评价优于对比算法,对于破损壁画修复结果更加清晰自然。 展开更多
关键词 壁画修复 多层次特征 多分支短链融合 超图卷积 卷积长短期记忆网络
下载PDF
基于字词向量融合的民航智慧监管短文本分类 被引量:1
5
作者 王欣 干镞锐 +2 位作者 许雅玺 史珂 郑涛 《中国安全科学学报》 CAS CSCD 北大核心 2024年第2期37-44,共8页
为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题... 为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题。为解决类别不平衡问题,采用数据增强算法在原始文本上进行变换,生成新的样本,使各个类别的样本数量更加均衡。将字向量和词向量按字融合拼接,得到具有词特征信息的字向量。将字词融合的向量分别送入到文本卷积神经网络(TextCNN)和双向长短期记忆(BiLSTM)模型中进行不同维度的特征提取,从局部的角度和全局的角度分别提取特征,并在民航监管事项检查记录数据集上进行试验。结果表明:该模型准确率为0.9837,F 1值为0.9836。与一些字嵌入模型和词嵌入模型相对比,准确率提升0.4%。和一些常用的单通道模型相比,准确率提升3%,验证了双通道模型提取的特征具有全面性和有效性。 展开更多
关键词 字词向量融合 民航监管 短文本 文本卷积神经网络(TextCNN) 双向长短期记忆(BiLSTM)
下载PDF
2D Fusion Simulations and Experimental Confirmations of Print Paths Using Composite Particles with Particle Method for Fused Filament Fabrication
6
作者 Yuto Imaeda Akira Todoroki +2 位作者 Ryosuke Matsuzaki Masahito Ueda Yoshiyasu Hirano 《Open Journal of Composite Materials》 CAS 2022年第4期111-130,共20页
Printing short fibre/thermoplastic composites using the fused filament fabrication method sometimes creates a gap between print paths. In this study, the two-dimensional moving particle semi-implicit method for liquid... Printing short fibre/thermoplastic composites using the fused filament fabrication method sometimes creates a gap between print paths. In this study, the two-dimensional moving particle semi-implicit method for liquid simulation was applied to simulate the print-path fusion process. The three-dimensional movement of the nozzle was simulated using the sliding motion of the nozzle. The method was applied to the printing of short carbon fibre/polyamide-6 composites, and the simulation results were compared with those of experiments. The simulated results of the cross-sectional configuration agreed well with the experimental results. This will enable the optimization of printing process parameters thus reducing the gap between print paths. 展开更多
关键词 Carbon Fiber Thermoplastic Resin Computational Modelling short Carbon Fiber Three-Dimensional Printer fusion Process
下载PDF
面向文本识别的CRNN模型的改进
7
作者 吕艳辉 刘明鑫 《沈阳理工大学学报》 CAS 2024年第4期27-31,共5页
复杂场景下文本识别因阴影、残缺、模糊、虚化等因素会出现识别精度下降问题。鉴于此,提出一种基于特征融合与双向简化门结构的CRNN模型。首先引入特征融合机制改进卷积神经网络(CNN)模型,利用特征金字塔结构,多加一条自底向上的路径,... 复杂场景下文本识别因阴影、残缺、模糊、虚化等因素会出现识别精度下降问题。鉴于此,提出一种基于特征融合与双向简化门结构的CRNN模型。首先引入特征融合机制改进卷积神经网络(CNN)模型,利用特征金字塔结构,多加一条自底向上的路径,将低层特征与高层特征融合在一起,以保留更多低层细节特征,提高场景文本识别精度;其次通过合并遗忘门与输入门,得到结构更简单、计算量和参数量更少的简化门结构替换长短期记忆(LSTM)网络改进循环神经网络(RNN)模型部分;最后设计消融实验验证改进后模型的有效性。三个数据集的测试结果表明:在ResNet50做主干网络时,与原始模型相比,改进后模型准确率提升了1.5%以上;在MobileNetV3做主干网络时,准确率提升了1.4%以上。 展开更多
关键词 特征融合 长短期记忆网络 简化门结构
下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:3
8
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
下载PDF
基于改进Transformer-BiLSTM的人体活动识别模型
9
作者 孙巍伟 毛亦鹏 +1 位作者 郑家春 梁毅玮 《电子测量技术》 北大核心 2024年第17期54-61,共8页
针对可穿戴传感器采集的时间序列往往具有维度高、噪声大等缺点导致活动识别方法准确率下降的问题,提出了基于改进Transformer-BiLSTM的人体活动识别模型。模型采用了Transformer编码器在处理长距离依赖和并行化计算方面的优势来提高序... 针对可穿戴传感器采集的时间序列往往具有维度高、噪声大等缺点导致活动识别方法准确率下降的问题,提出了基于改进Transformer-BiLSTM的人体活动识别模型。模型采用了Transformer编码器在处理长距离依赖和并行化计算方面的优势来提高序列特征提取的效率;随后将特征传递给添加了跳跃残差连接的双向长短期记忆网络,两次残差连接代替大量卷积层的同时保留了有效信息;提出了一种集成有时间信息编码的注意力层增强了模型的表达能力和对时序数据的理解能力。实验结果表明,该模型在公开数据集上的准确率达到了98.38%,有效提高了人体活动识别的准确率。 展开更多
关键词 步态识别 深度学习 TRANSFORMER 双向长短期记忆网络 特征融合
下载PDF
融合概率类别特征增强的短文本分类
10
作者 廖列法 李奎 姚秀 《计算机工程与设计》 北大核心 2024年第7期2074-2081,共8页
对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的... 对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的文本信息输入到改进后的特征提取模块中;将两个模块的输出进行特征融合,完成文本分类。实验结果表明,所提模型在THUCNews数据集上的F1值达到91.91%。FT模块可以与现有分类模型进行融合,提升模型的分类性能。 展开更多
关键词 类别特征增强 短文本 双池化 特征融合 统计算法 快速分类 深度学习
下载PDF
基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测
11
作者 董俊 刘瑞 +2 位作者 束洪春 罗琨 刘壮 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3883-3893,I0006-I0008,共14页
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测... 精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。 展开更多
关键词 深度学习 自注意力机制 多头注意力 BIRCH聚类 短期光伏功率预测 特征融合
下载PDF
融合多源数据的深度学习短时降水预测
12
作者 夏景明 戴如晨 谈玲 《计算机系统应用》 2024年第8期123-131,共9页
针对传统降水预测方法的局限性,提出了一种融合多源数据的深度学习短时降水预测模型MSF-Net.在GPM历史降水数据的基础上融合了ERA5气象数据、雷达数据和DEM数据.利用气象特征提取模块学习多源数据的气象特征,通过注意力融合预测模块进... 针对传统降水预测方法的局限性,提出了一种融合多源数据的深度学习短时降水预测模型MSF-Net.在GPM历史降水数据的基础上融合了ERA5气象数据、雷达数据和DEM数据.利用气象特征提取模块学习多源数据的气象特征,通过注意力融合预测模块进行特征融合并实现短时降水预测.将MSF-Net的降水预测结果与多种人工智能方法进行对比,实验结果表明,MSF-Net模型的风险评分TS和偏差评分Bias最优,表明其可以在6 h的预测时效内提升数据驱动降水预测的效果. 展开更多
关键词 深度学习 短时降水预测 注意力机制 数据融合 数据驱动
下载PDF
基于多特征融合时差网络的带式输送机区域违规行为识别
13
作者 马天 姜梅 +2 位作者 杨嘉怡 张杰慧 丁旭涵 《工矿自动化》 CSCD 北大核心 2024年第7期115-122,共8页
现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的... 现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的带式输送机区域违规行为识别方法,将多特征融合和时间差分进行结合,对不同时间段的行为进行多特征融合。首先在原始模型ResNet50的第2和第3阶段引入短期多特征融合(STMFF)模块,将来自多个连续帧的时间和特征拼接在一起,再对融合后的特征进行时间差分计算,即相邻帧的特征差值,以在短期内捕捉局部动作变化。然后在原始模型ResNet50的第4阶段引入长期多特征融合(LTMFF)模块,将来自连续帧的短期多特征拼接在一起,再对相邻时间点的特征进行时间差分计算,以获取行为的长期多特征。最后将融合后的特征进行分类,输出识别结果。实验结果表明:①该方法的平均精度和准确率较原始模型ResNet50分别提高了8.18%和8.47%,说明同时引入STMFF和LTMFF模块能够有效提取到不同时间段的多特征信息。②该方法在自建煤矿井下带式输送机区域违规行为数据集上的准确率为89.62%,平均精度为89.30%,模型的参数量为197.2×10^(6)。③Grad−CAM热力图显示,该方法能够更有效地关注到违规行为的关键区域,精确捕捉到井下带式输送机区域的违规行为。 展开更多
关键词 带式输送机 不安全行为 违规行为识别 短期多特征融合 长期多特征融合 多特征融合时差网络 时间差分
下载PDF
基于多尺度注意力特征融合的恶意URL检测研究
14
作者 马栋林 陈伟杰 +1 位作者 赵宏 宋佳佳 《电子测量技术》 北大核心 2024年第20期15-23,共9页
针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行... 针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行编码,以捕获URL字符串中字符级和词级特征表示。其次,通过改进卷积神经网络(CNN)提取不同尺度的字符结构特征和词级语义特征,并结合双向长短期记忆网络(BiLSTM)进一步提取深层次序列特征。此外,为了实现字符级与词级多尺度特征的动态融合,创新性地引入注意力特征融合模块(AFF),有效降低信息冗余并提升对长距离序列特征的提取能力。实验结果表明,所提模型与其他基准模型相比,准确率提升了0.32%~4.7%,F1分数提升了0.46%~5.5%,并在ISCX-URL2016等数据集上也达到了较好的测效果。 展开更多
关键词 恶意URL检测 多尺度特征 卷积神经网络 双向长短时记忆网络 注意力特征融合
下载PDF
基于DAN与FastText的藏文短文本分类研究 被引量:1
15
作者 李果 陈晨 +1 位作者 杨进 群诺 《计算机科学》 CSCD 北大核心 2024年第S01期103-107,共5页
随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行... 随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行无监督训练获得预训练的藏文音节向量集,使用预训练的音节向量集将藏文短文本信息转化为音节向量,把音节向量送入DAN(Deep Averaging Networks)网络并在输出阶段融合经过FastText网络训练的句向量特征,最后通过全连接层和softmax层完成分类。在公开的TNCC(Tibetan News Classification Corpus)新闻标题数据集上所提模型的Macro-F1是64.53%,比目前最好评测结果TiBERT模型的Macro-F1得分高出2.81%,比GCN模型的Macro-F1得分高出6.14%,融合模型具有较好的藏文短文本分类效果。 展开更多
关键词 藏文短文本分类 特征融合 深度平均网络 快速文本
下载PDF
责任节段减压联合矫形固定短节段融合手术治疗退变性腰椎侧弯的效果评价
16
作者 曾辉 吴刚强 +6 位作者 黄灿 韩晓军 刘波 陈诚 马龙 张博文 王宏海 《医用生物力学》 CAS CSCD 北大核心 2024年第5期896-902,共7页
目的探讨责任节段减压联合矫形固定短节段融合手术在退变性腰椎侧弯中的疗效。方法退变性腰椎侧弯患者124例,采用随机数字表法分为短节段和长节段融合组,每组62例。短节段融合组经后路短节段减压固定融合,融合节段为相邻腰椎;长节段融... 目的探讨责任节段减压联合矫形固定短节段融合手术在退变性腰椎侧弯中的疗效。方法退变性腰椎侧弯患者124例,采用随机数字表法分为短节段和长节段融合组,每组62例。短节段融合组经后路短节段减压固定融合,融合节段为相邻腰椎;长节段融合组经后路长节段减压固定融合,融合节段为相邻多个腰椎。术后6个月,比较两组冠状面腰椎侧凸Cobb角、矢状面腰椎前凸Cobb角、椎间孔高度、椎间隙高度、椎间孔面积、椎管面积、椎管直径、日本矫形外科协会(JOA)评分、Oswestry功能障碍指数(ODI)、腰背部及下肢的疼痛程度及术后并发症。结果术后6个月,短节段融合组和长节段融合组患者的冠状面腰椎侧凸Cobb角较术前均减小,矢状面腰椎前凸Cobb角较术前均增大(P<0.05)。术后6个月,短节段和长节段融合组患者的椎间孔高度、椎间隙高度、椎间孔面积、椎管面积及椎管直径均增加,短节段融合组高于长节段融合组(P<0.05)。术后6个月,短节段和长节段融合组患者JOA评分较术前均升高,短节段融合组高于长节段融合组(P<0.05);短节段和长节段融合组患者ODI评分较术前均降低,短节段融合组低于长节段融合组(P<0.05)。术后6个月,短节段和长节段融合组患者腰背部及下肢的疼痛程度评分较术前均降低(P<0.05)。长节段融合组术中椎板硬脊膜黏连所致减压过程中硬脊膜撕裂2例,短节段融合组未监测到严重并发症。结论经后路短节段减压固定融合与长节段减压固定融合在退变性腰椎侧弯的治疗上均可取得良好的疗效,而短节段融合组经后路短节段减压固定融合术的手术时间较短,术中出血量较低,腰椎功能恢复状态更优,且术后并发症的发生风险更低。 展开更多
关键词 退变性腰椎侧弯 节段减压 短节段融合 长节段融合
下载PDF
基于长短路融合及数据平衡的SAR船舶检测算法
17
作者 张宇 于蕾 +2 位作者 单明广 郑丽颖 梁旭辉 《航天返回与遥感》 CSCD 北大核心 2024年第2期134-143,共10页
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目... 针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。 展开更多
关键词 合成孔径雷达图像 船舶检测 长短路特征融合 数据重分配
下载PDF
基于链接关系预测的弯曲密集型商品文本检测
18
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
下载PDF
基于多模态自适应融合的短视频虚假新闻检测
19
作者 朱枫 张廷辉 +1 位作者 李鹏 徐鹤 《计算机科学》 CSCD 北大核心 2024年第11期39-46,共8页
随着互联网和社交媒体的迅速发展,新闻的传播途径不再局限于传统的媒体渠道。语义丰富的多模态数据成为新闻的载体,虚假新闻也随之得到了广泛的传播。由于虚假新闻的泛滥会对个人以及社会产生难以预估的影响,针对虚假新闻的检测已经成... 随着互联网和社交媒体的迅速发展,新闻的传播途径不再局限于传统的媒体渠道。语义丰富的多模态数据成为新闻的载体,虚假新闻也随之得到了广泛的传播。由于虚假新闻的泛滥会对个人以及社会产生难以预估的影响,针对虚假新闻的检测已经成为目前的研究热点。现有的多模态虚假新闻检测方法仅针对文本和图像数据,无法充分利用短视频中的多模态信息,且忽略了不同模态间的一致性和差异性特征,难以充分发挥多种模态融合的优势。为解决该问题,提出一种基于多模态自适应融合的短视频虚假新闻检测模型。首先对短视频中多模态数据进行特征提取,采用跨模态对齐融合获取不同模态间的一致性和互补性特征;然后根据不同模态特征对最终融合结果的贡献实现自适应融合;最后利用分类器实现虚假新闻检测。在公开的短视频数据集上的实验结果表明,该模型的准确率、精确率、召回率和F1分数都高于当前的先进基线模型。 展开更多
关键词 虚假新闻检测 多模态 短视频 跨模态融合 自适应融合
下载PDF
基于多源数据融合的分布式光伏聚合超短期预测方法 被引量:2
20
作者 曾锃 肖茂然 +3 位作者 毕思博 张明轩 李世豪 窦春霞 《电力信息与通信技术》 2024年第2期9-15,共7页
分布式光伏聚合发电的超短期预测是支撑其功率快速调节的前提保障,由于规模化接入的分布式光伏容量小、分布广,其发电时序特性差异性大、非平稳性强,导致其超短期预测精度难以保证。为此,文章提出基于多源数据融合的分布式光伏聚合超短... 分布式光伏聚合发电的超短期预测是支撑其功率快速调节的前提保障,由于规模化接入的分布式光伏容量小、分布广,其发电时序特性差异性大、非平稳性强,导致其超短期预测精度难以保证。为此,文章提出基于多源数据融合的分布式光伏聚合超短期预测方法。该方法基于变分模态分解法,充分挖掘分布式光伏聚合发电非平稳性特性,并采用核主成分分析法对引发光伏发电非平稳性的影响因素即温度、湿度、光照、云量等多源数据进行量化解析,同时结合改进的长短期记忆神经网络,创建了多源数据融合方法,实现了分布式光伏聚合发电超短期预测。仿真结果表明,该方法有效提升了模型的预测精度。与传统方法相比,提出的预测方法对随机性波动严重的光伏超短期预测具有显著优势。 展开更多
关键词 分布式光伏聚合预测 变分模态分解 非平稳性 核主成分分析 多源数据融合 长短期记忆神经网络
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部