为研究感应测井数据质量,采用长短期记忆(Long Short Term Memory,LSTM)网络作为感应测井数据预测模型。首先建立阵列感应测井数据库,进行统一标准格式化并建立3层模拟地层环境模型;其次建立LSTM神经网络预测模型预测阵列感应测井原始...为研究感应测井数据质量,采用长短期记忆(Long Short Term Memory,LSTM)网络作为感应测井数据预测模型。首先建立阵列感应测井数据库,进行统一标准格式化并建立3层模拟地层环境模型;其次建立LSTM神经网络预测模型预测阵列感应测井原始阵列数据,并通过图表可视化输出预测结果;最后使用预测指标评价预测结果。结果表明基于LSTM神经网络的预测模型预测阵列感应测井原始阵列数据较为准确,且比传统方法更快速、简便。展开更多
文摘为研究感应测井数据质量,采用长短期记忆(Long Short Term Memory,LSTM)网络作为感应测井数据预测模型。首先建立阵列感应测井数据库,进行统一标准格式化并建立3层模拟地层环境模型;其次建立LSTM神经网络预测模型预测阵列感应测井原始阵列数据,并通过图表可视化输出预测结果;最后使用预测指标评价预测结果。结果表明基于LSTM神经网络的预测模型预测阵列感应测井原始阵列数据较为准确,且比传统方法更快速、简便。