The cotton direct seeding after wheat(rape) harvested is under trial and would be the future direction at the Yangtze River Valley region of China.The objective of this study was to quantify the effects of branch and ...The cotton direct seeding after wheat(rape) harvested is under trial and would be the future direction at the Yangtze River Valley region of China.The objective of this study was to quantify the effects of branch and stem architecture on cotton yield and identify the optimal cotton architecture to compensate the yield loss due to the reduction of individual production capacity under high planting density in the direst seeding after wheat harvested cropping system.The characteristics of the stem and branch architecture and the relationships between architecture of the stem and branch with yield formation were studied on eight short season cotton cultivars during 2015 and 2016 cotton growth seasons.Based on the two years results,three cultivars with different architectures of stem and branch were selected to investigate the effect of mepiquat chloride(MC) application on the architecture of the stem and branch,boll retention,and the yield in 2017.Significant differences were observed on plant height,all fruiting nodes to branches ratio(NBR) in the cotton plant,and the curvature of the fruiting branch(CFB) among the studied cultivars.There were three types of stem and fruiting branch structures: Zhong425 with stable and suitable plant height and NBR(about 90 cm and 2.5,respectively),high CFB(more than 10.0),and high boll retention speed and seed cotton yield;Siyang 822 with excessive plant height and NBR,low CFB,and low boll retention speed and seed cotton yield;and other studied cultivars with unstable structure of stem and branch,boll retention speed,and seed cotton yield across years.And MC application could promote the appropriate plant height and NBR and high CFB and thus resulted in high boll retention speed and the yield.The results suggested that the suitable plant height and NBR(about 90 cm and 2.5 respectively),and high CFB(more than 10.0),which was related to both genotype and cultural practice,could promote the higher boll retention speed and seed cotton yield.展开更多
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the...The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.展开更多
To identify a strategy for earlier sowing and harvesting of spring maize(Zea mays L.) in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of Ch...To identify a strategy for earlier sowing and harvesting of spring maize(Zea mays L.) in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1(KX7349), was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments(plastic film-mulched raised bed(RF) and flat field without plastic film mulching(CK) in 2014; RF, plastic film-mulched flat field(FF), and CK in 2015)were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK(1.6–3.5 °C in average) during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days(GDDs) in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7%higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency(WUE) than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5%lower water use(ET), and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET,and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.展开更多
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila...A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.展开更多
In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic r...In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic research on short-term heavy precipitation events in Shanxi Province. Based on hourly precipitation data during the flood season (May to September) from 109 meteorological stations in Shanxi, China in 1980-2015, the temporal and spatial variation characteristics of short-time heavy rainfall during the flood season are analyzed by using wavelet analysis and Mann-Kendall test. The results show that the short-time heavy rainfall in the flood season in Shanxi Province is mainly at the grade of 20 - 30 mm/h, with an average of 97 stations having short-time heavy rainfall each year, accounting for 89% of the total stations. The short-time heavy rainfall mainly concentrated in July and August, and the maximal rain intensity in history appeared at 23 - 24 on June 17, 1991 in Yongji, Shanxi is 91.7 mm/h. During the flood season, the short-time heavy rainfalls always occur at 16 - 18 pm, and have slightly different concentrated time in different months. The main peaks of June, July and August are at 16, 17 and 18 respectively, postponed for one hour. Short-time heavy rainfall overall has the distribution that the south is more than the north and the east less than the west in Shanxi area. In the last 36 years, short-time heavy rainfall has a slight increasing trend in Shanxi, but not significant. There is a clear 4-year period of oscillation and inter-decadal variation. It has a good correlation between the total precipitation and times of short-time heavy rainfall during the flood season.展开更多
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ...In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model.展开更多
基金funded by the National Key Research and Development Program of China(2018YFD0100400 and 2017YFD0201300)the Engineering Science and Technology Innovation Fund of Chinese Academy of Agricultural Sciences(2016PCTS-1)+1 种基金the National Natural Science Foundation of China(31671613)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘The cotton direct seeding after wheat(rape) harvested is under trial and would be the future direction at the Yangtze River Valley region of China.The objective of this study was to quantify the effects of branch and stem architecture on cotton yield and identify the optimal cotton architecture to compensate the yield loss due to the reduction of individual production capacity under high planting density in the direst seeding after wheat harvested cropping system.The characteristics of the stem and branch architecture and the relationships between architecture of the stem and branch with yield formation were studied on eight short season cotton cultivars during 2015 and 2016 cotton growth seasons.Based on the two years results,three cultivars with different architectures of stem and branch were selected to investigate the effect of mepiquat chloride(MC) application on the architecture of the stem and branch,boll retention,and the yield in 2017.Significant differences were observed on plant height,all fruiting nodes to branches ratio(NBR) in the cotton plant,and the curvature of the fruiting branch(CFB) among the studied cultivars.There were three types of stem and fruiting branch structures: Zhong425 with stable and suitable plant height and NBR(about 90 cm and 2.5,respectively),high CFB(more than 10.0),and high boll retention speed and seed cotton yield;Siyang 822 with excessive plant height and NBR,low CFB,and low boll retention speed and seed cotton yield;and other studied cultivars with unstable structure of stem and branch,boll retention speed,and seed cotton yield across years.And MC application could promote the appropriate plant height and NBR and high CFB and thus resulted in high boll retention speed and the yield.The results suggested that the suitable plant height and NBR(about 90 cm and 2.5 respectively),and high CFB(more than 10.0),which was related to both genotype and cultural practice,could promote the higher boll retention speed and seed cotton yield.
文摘The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201103001)
文摘To identify a strategy for earlier sowing and harvesting of spring maize(Zea mays L.) in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1(KX7349), was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments(plastic film-mulched raised bed(RF) and flat field without plastic film mulching(CK) in 2014; RF, plastic film-mulched flat field(FF), and CK in 2015)were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK(1.6–3.5 °C in average) during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days(GDDs) in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7%higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency(WUE) than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5%lower water use(ET), and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET,and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.
基金National Natural Science Foundation of China(41075040,41475102)"973"project for typhoon(2015CB452802)+1 种基金CMA Special Welfare Research Fund(GYHY201406009)Public Welfare(Meteorological Sector)Research Fund(GYHY201406003)
文摘A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.
文摘In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic research on short-term heavy precipitation events in Shanxi Province. Based on hourly precipitation data during the flood season (May to September) from 109 meteorological stations in Shanxi, China in 1980-2015, the temporal and spatial variation characteristics of short-time heavy rainfall during the flood season are analyzed by using wavelet analysis and Mann-Kendall test. The results show that the short-time heavy rainfall in the flood season in Shanxi Province is mainly at the grade of 20 - 30 mm/h, with an average of 97 stations having short-time heavy rainfall each year, accounting for 89% of the total stations. The short-time heavy rainfall mainly concentrated in July and August, and the maximal rain intensity in history appeared at 23 - 24 on June 17, 1991 in Yongji, Shanxi is 91.7 mm/h. During the flood season, the short-time heavy rainfalls always occur at 16 - 18 pm, and have slightly different concentrated time in different months. The main peaks of June, July and August are at 16, 17 and 18 respectively, postponed for one hour. Short-time heavy rainfall overall has the distribution that the south is more than the north and the east less than the west in Shanxi area. In the last 36 years, short-time heavy rainfall has a slight increasing trend in Shanxi, but not significant. There is a clear 4-year period of oscillation and inter-decadal variation. It has a good correlation between the total precipitation and times of short-time heavy rainfall during the flood season.
基金This reasearch was supported by the Science Foundation of Guangxi under grant No.0339025the Natural Sciences Foundation of China under grant No.40075021.
文摘In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model.