期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
基于二次分解集成的机场流量短期预测
1
作者 王飞 韩翔宇 《中国民航大学学报》 CAS 2024年第6期52-60,共9页
为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3... 为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3个分量,并计算其样本熵。其次,应用遗传算法(GA,genetic algorithm)优化变分模态分解(VMD,variational mode decomposition)参数,对熵值较大的分量进行二次分解。再次,使用极端梯度提升(XGBoost,extreme gradient boosting)对二次分解后的所有分量进行预测,采用加和集成得到最终的预测值。最后,采集国内典型机场实际运行数据进行实例分析。针对北京首都国际机场60 min进场、离场流量时序,本文模型预测的均等系数(EC,equal coefficient)值分别为0.9703、0.9959,相比其他常用模型均有所提高。此外,对于上海浦东、上海虹桥、广州白云3个大型国际机场,本文模型在60 min、30 min统计尺度下进场和离场流量预测的EC值均在0.9700以上,15 min统计尺度下预测的EC值均在0.9500以上。结果表明,本文建立的二次分解集成预测模型具有良好的准确性和普适性,用于机场流量短期预测是可行和有效的。 展开更多
关键词 航空运输 空中交通流量管理 机场流量短期预测 分解集成预测 二次分解
下载PDF
基于VMD-ISSA-LSTM的短时交通流预测研究
2
作者 庞学丽 宋坤 +2 位作者 姚红云 李一博 曹志富 《现代电子技术》 北大核心 2024年第8期31-36,共6页
针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合... 针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合,建立一种短时交通流预测模型(VMD-ISSA-LSTM)。首先利用VMD对历史原始交通流数据进行分解;然后采用佳点集、正弦函数扰动和Tent混沌映射等策略对标准的SSA算法加以改进,增强ISSA算法的寻优能力;最后,将每个分量送入ISSA-LSTM中进行预测,同时将预测结果线性叠加,得到交通流量预测值。以上海市中山北路-曹杨路口2018年11月1日—30日的历史交通数据对模型进行验证。结果表明,与LSTM、VMD-LSTM、VMD-SSA-LSTM等传统预测模型相比,VMD-ISSA-LSTM模型的预测结果的平均绝对百分比误差为1.278 4%,能够更好地应用于短时交通流预测中。 展开更多
关键词 短时交通流预测 变分模态分解 改进麻雀搜索算法 长短期记忆神经网络 佳点集 正弦函数扰动 Tent混沌映射
下载PDF
基于完全自适应噪声集合经验模态分解的短时交通流组合预测
3
作者 熊浩 张丽 郝椿淋 《物流科技》 2024年第19期97-103,共7页
为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,... 为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,利用排列熵算法(PE算法)计算各分量的复杂度;然后根据复杂度和随机性的不同分为高频和低频,分别使用ATT-TCN-BIGRU模型和ARIMA模型对高频分量和低频分量进行预测,最后叠加高频和低频的每个分量预测结果作为最终短时交通流预测值。仿真分析结果表明:与ARIMA模型、TCN模型、BIGRU模型、ATT-TCN-BIGRU模型相比,此模型的平均绝对误差及平均绝对百分比误差为最小,预测精度更高。 展开更多
关键词 短时交通流预测 完全自适应噪声集合经验模态分解 排列熵 组合预测
下载PDF
基于ResNet-LSTM组合模型的网络流量预测研究 被引量:1
4
作者 马攀 《兰州文理学院学报(自然科学版)》 2024年第2期45-50,共6页
对网络流量的准确预测,不仅是网络安全稳定运行的保障,还是运营商合理调度网络资源的重要参考.为了提高网络流量预测精度,提出一种基于残差网络与长短时记忆网络相结合的流量预测方法.首先,使用残差卷积层提取原始数据特征,并将提取的... 对网络流量的准确预测,不仅是网络安全稳定运行的保障,还是运营商合理调度网络资源的重要参考.为了提高网络流量预测精度,提出一种基于残差网络与长短时记忆网络相结合的流量预测方法.首先,使用残差卷积层提取原始数据特征,并将提取的特征向量输入LSTM各节点,然后,LSTM细胞单元通过循环连接进行长序列预测,最后,通过输出层输出预测结果.利用淮南汽车站采集到的网络流量数据进行实验仿真,并与卷积网络、残差网络和长短时记忆网络预测方法对比,实验结果表明,ResNet-LSTM模型预测精度更高. 展开更多
关键词 深度学习 残差网络 长短时记忆网络 网络流量预测
下载PDF
基于WNN模型的短时交通量预测研究
5
作者 高毅 罗宇文 +1 位作者 邱均远 曾健林 《工程经济》 2024年第5期53-61,共9页
科学准确预测运营期公路交通量是实现智能交通系统的重要组成部分,并能对公路基础设施的优化设置提供关键支持。本文采用小波神经网络、GA-BP、SVM、GA-LSSVM、PSO-LSSVM五种模型对短时交通量进行预测,并将预测值与实际值进行对比。研... 科学准确预测运营期公路交通量是实现智能交通系统的重要组成部分,并能对公路基础设施的优化设置提供关键支持。本文采用小波神经网络、GA-BP、SVM、GA-LSSVM、PSO-LSSVM五种模型对短时交通量进行预测,并将预测值与实际值进行对比。研究发现:神经网络预测模型整体优于支持向量机及其优化模型,能提升交通量预测的有效性和准确性,其中GA-BP模型相对于其他模型在短期交通量预测中具有预测精度高、收敛速度快的特点,能满足公路运营管理及智能交通需求。 展开更多
关键词 公路 神经网络 SVM 短时交通量预测
下载PDF
基于STAtt-DGCN模型的高速公路短时交通流预测
6
作者 唐嘉立 舒宏柯 +1 位作者 黄小峰 陈梦宇 《市政技术》 2024年第11期84-91,126,共9页
短时交通流精准预测是高速公路交通运行状态精细化监管的重要手段,有助于提前监测高速公路潜在车流拥挤事件并及时管控。国内外学者已经从数理统计、数据驱动的维度提出了多种短时交通流的预测方法,虽然成果颇丰,但对交通流数据在时间... 短时交通流精准预测是高速公路交通运行状态精细化监管的重要手段,有助于提前监测高速公路潜在车流拥挤事件并及时管控。国内外学者已经从数理统计、数据驱动的维度提出了多种短时交通流的预测方法,虽然成果颇丰,但对交通流数据在时间关联性、空间关联性方面的共同建模能力不足,导致预测精度仍然有提升的空间。基于此,笔者提出了一种时空注意力扩散图卷积模型(STAtt-DGCN),来进行高速公路交通流的短时预测。该模型依托经典的时间注意力机制、空间注意力机制和图卷积网络,设计了时空模块、时空卷积模块以及扩散图卷积网络模块,来分别建立交通流数据在时间、空间维度的关联性,从而使预测精度得到有效提升。选取了江西省某高速公路3个月的ETC数据集来验证所提模型的性能,并选用ARIMA、LSTM、STGCN等常见基线模型来进行模型的对比评估。实验结果表明:STAtt-DGCN模型几乎在每个月的数据集上都展现出较好的预测能力。以2022年4月为例,与最具挑战的STGCN基线模型相比,所提模型在平均绝对误差、均方绝对误差、平均绝对误差上分别下降了17.9%、40.0%、11.0%。这意味着STAtt-DGCN模型的预测精度相较于基准方法有较大提升,可应用于高速公路交通流精准预测。 展开更多
关键词 短时交通流预测 高速公路 深度学习模型 时空注意力机制 扩散图卷积网络
下载PDF
基于ARIMA的高速公路短时交通流量预测方法研究
7
作者 崔建 李镇 +4 位作者 赵家旺 康传刚 张雷 王纳 郭亚娟 《山东交通科技》 2024年第4期89-93,共5页
短时交通流预测对于高速公路交通运营管理具有重要的指导价值,能够为高速公路交通流量趋势分析、基础设施建设规模确定以及运营效益评估提供可靠的数据基础。在高速公路交通流量数据平稳性分析的基础上,利用信息准则法进行预测模型识别... 短时交通流预测对于高速公路交通运营管理具有重要的指导价值,能够为高速公路交通流量趋势分析、基础设施建设规模确定以及运营效益评估提供可靠的数据基础。在高速公路交通流量数据平稳性分析的基础上,利用信息准则法进行预测模型识别,通过参数估计和模型检验,构建基于ARIMA的高速公路短时交通流量预测模型。最后利用济青高速的真实交通流量数据进行实例分析,结果表明ARIMA预测模型在高速公路短时交通流量预测方面具有良好的适应性和稳定性,在预测精度方面优于移动平均和指数平滑预测模型。 展开更多
关键词 高速公路 智能交通 短时预测 ARIMA 交通流量
下载PDF
基于非参数回归的快速路行程速度短期预测算法 被引量:17
8
作者 翁剑成 荣建 +1 位作者 任福田 魏中华 《公路交通科技》 CAS CSCD 北大核心 2007年第3期93-97,106,共6页
基于北京市快速路上的检测器所采集的历史数据,经过数据筛选,剔除判别,小波滤噪平稳处理,聚类分析等过程,建立了交通状态演变系列的历史样本数据库。基于所构建的历史数据库,通过数值试验,确定了状态向量、距离匹配原则,K近邻值等参量,... 基于北京市快速路上的检测器所采集的历史数据,经过数据筛选,剔除判别,小波滤噪平稳处理,聚类分析等过程,建立了交通状态演变系列的历史样本数据库。基于所构建的历史数据库,通过数值试验,确定了状态向量、距离匹配原则,K近邻值等参量,构建了一种基于K近邻的非参数回归短时交通预测模型,实现了对路段行程速度的短时预测。最后,利用随机选取的历史数据系列对预测模型的精度进行了检验。结果表明,预测算法的精度可以达到90%以上,可以很好地满足ITS应用系统对于交通预测数据的精度要求。 展开更多
关键词 智能交通系统 短时交通流预测 K近邻 非参数回归 行程速度
下载PDF
基于维度加权的残差LSTM短期交通流量预测 被引量:16
9
作者 李月龙 唐德华 +4 位作者 姜桂圆 肖志涛 耿磊 张芳 吴骏 《计算机工程》 CAS CSCD 北大核心 2019年第6期1-5,共5页
基于神经网络的交通流量预测由于嵌入了部分手工设计的特征,使得提取的网络特征功能单一,存在适应性及鲁棒性差、数据局部特征刻画不准确等问题。为此,提出基于残差长短期记忆网络(LSTM)的交通流量预测方法,利用集成学习思想将空间分布... 基于神经网络的交通流量预测由于嵌入了部分手工设计的特征,使得提取的网络特征功能单一,存在适应性及鲁棒性差、数据局部特征刻画不准确等问题。为此,提出基于残差长短期记忆网络(LSTM)的交通流量预测方法,利用集成学习思想将空间分布的数据端到端训练到残差LSTM网络中,同时在每个LSTM单元后引入维度加权单元,显式建模特征维度之间的相互依赖关系。实验结果表明,该方法能实现短期交通流量数据的自适应建模分析。 展开更多
关键词 智能交通 短期交通流量预测 残差连接 长短期记忆网络 维度加权
下载PDF
基于主成分分析和支持向量机的道路网短时交通流量预测 被引量:47
10
作者 姚智胜 邵春福 +1 位作者 熊志华 岳昊 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第1期48-52,共5页
将主成分分析和支持向量机回归相结合,进行道路网多断面的短时交通流量预测研究。首先,整理分析路网中多个断面交通流量数据进行主成分分析,得到主成分数据序列;其次,根据主成分数据序列建立训练集训练支持向量机,并利用遗传算法优化参... 将主成分分析和支持向量机回归相结合,进行道路网多断面的短时交通流量预测研究。首先,整理分析路网中多个断面交通流量数据进行主成分分析,得到主成分数据序列;其次,根据主成分数据序列建立训练集训练支持向量机,并利用遗传算法优化参数;最后,输入支持向量机所需数据,得到主成分预测结果,转化为断面交通流量数据,从而预测道路网短时交通流量。采用城市快速路多断面数据进行实例分析,结果表明,该模型比单一断面预测方法的效果更好。 展开更多
关键词 智能交通系统 短时交通流量预测 支持向量机 主成分分析 道路网
下载PDF
基于ARMA和卡尔曼滤波的短时交通预测 被引量:31
11
作者 杨高飞 徐睿 +2 位作者 秦鸣 郑凯俐 张兵 《郑州大学学报(工学版)》 CAS 北大核心 2017年第2期36-40,共5页
交通预测是智能交通运输系统研究中的一个重要组成部分.为了有效地获取短时交通流量预测数据,保障交叉口畅通,依据道路情况的不确定性以及交通流的非线性变化,应用ARMA模型及卡尔曼滤波模型通过预测结果误差大小来组合预测路段短时交通... 交通预测是智能交通运输系统研究中的一个重要组成部分.为了有效地获取短时交通流量预测数据,保障交叉口畅通,依据道路情况的不确定性以及交通流的非线性变化,应用ARMA模型及卡尔曼滤波模型通过预测结果误差大小来组合预测路段短时交通流量.实例表明,组合模型预测结果达到较高的预测精度,预测误差降低到了5.79%,并且比单一模型预测精度要高.通过该组合模型可以更准确地预测短时交通流量,同时也可以为交叉口信号配时提供必要的理论依据和技术指导,对减小交通延误,提高道路服务水平有一定的应用价值. 展开更多
关键词 智能交通 短时交通预测 ARMA 卡尔曼滤波 预测误差
下载PDF
基于支持向量回归机的交通状态短时预测方法研究 被引量:51
12
作者 姚智胜 邵春福 高永亮 《北京交通大学学报》 EI CAS CSCD 北大核心 2006年第3期19-22,共4页
提出基于支持向量回归机的交通状态短时预测方法.具体的做法是,以交通检测器收集到某时刻前几时段及上下游前几时段的交通流量、占有率、平均速度等交通参数为输入,以对应时段交通流量为输出,选取核函数,对支持向量回归机进行训练.应用... 提出基于支持向量回归机的交通状态短时预测方法.具体的做法是,以交通检测器收集到某时刻前几时段及上下游前几时段的交通流量、占有率、平均速度等交通参数为输入,以对应时段交通流量为输出,选取核函数,对支持向量回归机进行训练.应用训练完成的支持向量回归机,输入交通流量、占有率、平均速度,来预测下时段的交通流量.最后,以某城市道路的实时数据来对模型进行验证,预测结果表明了模型的有效性. 展开更多
关键词 交通流短时预测 支持向量回归机 统计学习 人工智能
下载PDF
基于混沌和RBF神经网络的短时交通流量预测 被引量:39
13
作者 张玉梅 曲仕茹 温凯歌 《系统工程》 CSCD 北大核心 2007年第11期26-30,共5页
针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流... 针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流存在混沌的前提下,对交通流量数据进行相空间重构。构建了RBF神经网络,并对模拟产生的Lorenz和Rossler混沌时间序列数据以及实际采集的高速公路交通流量数据进行了仿真研究。结果表明,该方法对模拟产生的混沌时间序列具有很好的预测效果,在交通流量的短时预测上也具有较高的预测精度。 展开更多
关键词 短时交通流量 预测 混沌 RBF神经网络 相空间重构
下载PDF
基于ARIMA模型的短时交通流实时自适应预测 被引量:98
14
作者 韩超 宋苏 王成红 《系统仿真学报》 CAS CSCD 2004年第7期1530-1532,1535,共4页
实时、准确的短时交通流量预测是智能交通系统(ITS)中的一个关键问题。基于采用ARIMA(p,d,0)模型结构的时间序列分析方法,提出一种短时交通流实时自适应预测算法。在该算法中采用带遗忘因子的递推最小二乘方法进行参数估计,采用基于线... 实时、准确的短时交通流量预测是智能交通系统(ITS)中的一个关键问题。基于采用ARIMA(p,d,0)模型结构的时间序列分析方法,提出一种短时交通流实时自适应预测算法。在该算法中采用带遗忘因子的递推最小二乘方法进行参数估计,采用基于线性最小方差预报原理的Astrom预报算法进行预报。针对大量实测数据进行仿真实验,结果表明:减小遗忘因子可以提高一步预测的性能。此外,将该算法分别应用于工作日和双休日的数据时,仿真实验都取得了较好的预测效果,说明该算法对不同交通流状况具有较好的适应性。 展开更多
关键词 时间序列分析 ARIMA模型 短时交通流预测 自适应预测 实时预测
下载PDF
基于Elman神经网络的道路网短时交通流预测方法 被引量:34
15
作者 董春娇 邵春福 +1 位作者 熊志华 李娟 《交通运输系统工程与信息》 EI CSCD 2010年第1期145-151,共7页
以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测.首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并... 以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测.首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并以重构的交通流时间序列作为输入,采用Elman神经网络实现道路网多断面交通流同时预测;最后,基于城市快速路多断面交通流量数据对短时交通流预测方法进行验证,并与BP神经网络预测结果进行对比分析.验证结果表明,本文提出的道路网划分方法能够划分出满足预测需求的子路网,在划分的子路网上,应用Elman神经网络能够实现道路网多断面同时预测,且预测效果优于BP神经网络. 展开更多
关键词 城市交通 交通流短时预测 道路网划分 广义空间距离 ELMAN神经网络 BP神经网络
下载PDF
大数据背景下城市短时交通流预测 被引量:18
16
作者 杨正理 陈海霞 +1 位作者 王长鹏 徐智 《公路交通科技》 CAS CSCD 北大核心 2019年第2期136-143,共8页
为了在尽可能短的时间内挖掘和分析海量城市交通流数据,实时准确地预测城市短时交通流状态,建立有效的城市交通诱导系统,改善城市交通管理水平。根据城市交通大数据的来源异同、数据量大、种类繁多等特征,提出大数据背景下的城市短时交... 为了在尽可能短的时间内挖掘和分析海量城市交通流数据,实时准确地预测城市短时交通流状态,建立有效的城市交通诱导系统,改善城市交通管理水平。根据城市交通大数据的来源异同、数据量大、种类繁多等特征,提出大数据背景下的城市短时交流状态预测新方法。新方法综合利用了随机森林算法进行机器学习的优势,克服了决策树算法的一些不足,又保留了决策树算法的优点;同时,新方法在大数据体系下实现了并行运算,提高了新方法各方面的学习性能,能够更快速、更加精确地实现城市短时交通流状态预测,并为城市交通诱导系统提出合理的交通建议。首先,针对城市交通流大数据的特征和城市短时交通流状态的预测需求,采用通用大数据分析处理平台构建城市交通流大数据管理平台,实现城市交通流大数据的整合、分布式存储与管理;然后,结合云计算技术,利用并行化计算模型MapReduce对随机森林算法实现并行化,增强算法的数据分析与处理效率,提高算法对大数据的处理能力;最后,采用并行化的随机森林算法对城市交通流大数据进行计算与处理,实现城市短时交通流状态的高效和实时预测。试验结果表明,并行化的随机森林算法的数据分析与处理效率、对城市短时交通流状态的预测精度,以及在不同数据集上对大数据的处理能力等各方面的性能均优于传统的预测方法。 展开更多
关键词 交通工程 城市短时交通流预测 随机森林算法 大数据 云计算
下载PDF
基于GA-LSSVR模型的路网短时交通流预测研究 被引量:19
17
作者 陈小波 刘祥 +3 位作者 韦中杰 梁军 蔡英凤 陈龙 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第1期60-66,81,共8页
目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并... 目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并应用于路网短时交通流预测.该预测模型不仅可以自动优化LSSVR模型参数,而且可以从高维路网交通流数据中选择有助于交通流预测的变量子集.实验结果表明,与LSSVR模型相比,所提方法具有更好的预测能力;而且,少量时空变量被选择出来构建预测模型,极大减少了信息冗余,改进了模型可解释性. 展开更多
关键词 智能交通 变量选择 稀疏混合遗传算法 短时交通流预测 最小二乘支持向量回归
下载PDF
基于非参数回归的短时交通流量预测与事件检测综合算法 被引量:92
18
作者 宫晓燕 汤淑明 《中国公路学报》 EI CAS CSCD 北大核心 2003年第1期82-86,共5页
针对目前短时交通流预测存在的问题 ,提出一种基于非参数回归的短时交通流量预测与事件检测综合算法框架并对框架中的每个步骤进行详细说明。为了进一步提高上述算法的精度与速度 ,对传统的非参数回归算法做了两方面改进 :基于密集度的... 针对目前短时交通流预测存在的问题 ,提出一种基于非参数回归的短时交通流量预测与事件检测综合算法框架并对框架中的每个步骤进行详细说明。为了进一步提高上述算法的精度与速度 ,对传统的非参数回归算法做了两方面改进 :基于密集度的变 K搜索算法与基于动态聚类和散列函数的历史数据组织方式。通过这些改进 ,使得上述基于非参数回归的算法成为一种“无参数”、可移植、高预测精度的实时预测算法 ,并能有效地用于短时交通流的预测问题中。现场实验充分表明该算法完全满足实时交通流预测的需要。 展开更多
关键词 事件检测 综合算法 交通工程 短时交通流预测 非参数回归 动态聚类 密集度
下载PDF
短时交通流组合模型预测 被引量:18
19
作者 沈国江 朱芸 +1 位作者 钱晓杰 胡越 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第2期246-251,共6页
针对城市道路流量的非线性和不确定性特点,为避免单一模型预测准确率不高的缺陷,该文提出了一种短时交通流组合模型。该模型包含卡尔曼滤波模型和径向基函数神经网络模型2个子模型,较好地解决了神经网络不能反映大流量下的稳态性问题,... 针对城市道路流量的非线性和不确定性特点,为避免单一模型预测准确率不高的缺陷,该文提出了一种短时交通流组合模型。该模型包含卡尔曼滤波模型和径向基函数神经网络模型2个子模型,较好地解决了神经网络不能反映大流量下的稳态性问题,以及卡尔曼滤波在流量不稳定时预测准确率不高的问题。在组合模型中引入惯性因子,确保了模型的稳定性。仿真结果表明该方法是可行有效的。 展开更多
关键词 间断流 短时交通流预测 卡尔曼滤波模型 径向基函数神经网络 惯性因子
下载PDF
基于K-邻域非参数回归短时交通流预测方法 被引量:36
20
作者 张晓利 贺国光 陆化普 《系统工程学报》 CSCD 北大核心 2009年第2期178-183,共6页
实时、准确的短时交通流预测是交通控制与诱导中的一个关键问题和难点.非参数回归是解决短时交通流预测问题的较好方法,但是案例库生成难和搜索速度慢是其目前实际应用的两大障碍.为此,提出一种基于平衡二叉树的K-邻域非参数回归(KNN-N... 实时、准确的短时交通流预测是交通控制与诱导中的一个关键问题和难点.非参数回归是解决短时交通流预测问题的较好方法,但是案例库生成难和搜索速度慢是其目前实际应用的两大障碍.为此,提出一种基于平衡二叉树的K-邻域非参数回归(KNN-NPR)的短时交通流预测方法,采用聚类方法和平衡二叉树结构建立案例数据库,以提高预测精度和满足实时性要求.给出了预测示例说明了方法的有效性. 展开更多
关键词 短时交通流预测 非参数回归 聚类 平衡二叉树
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部