A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in...A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.展开更多
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Pro...This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional- Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrica...The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength λ=0.25 , an average height H<sub>e</sub>=10 and a Froude number fixed at 1 × 10<sup>5</sup>. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105. .展开更多
The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided se...The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.展开更多
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ...This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices.展开更多
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ...The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power...UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.展开更多
In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite el...In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.展开更多
Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, ta...Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy.展开更多
Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate...Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm.展开更多
Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unif...Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unified water wave theory, two kinds of improved linear waves were derived. The first one uses the same boundary conditions which were applied to derive 5-order Stokes wave. The second one uses the accurate boundary conditions (Eqs. 11 and 12). The two improved linear waves were compared with the existing linear wave.展开更多
A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter fa...A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter family of solutions in exact form, with all the coefficients determined in rational numbers. Comparative studies are pursued to investigate the effects due to changes of base parameters on (i) the accuracy of the theoretically predicted wave properties and (ii) the rate of convergence of perturbation expansion. Two important results are found by comparisons between the theoretical predictions based on a set of parameters separately adopted for expansion in turn. First, the accuracy and the convergence of the perturbation expansions, appraised versus the exact solution provided by an earlier paper [1] as the standard reference, are found to depend, quite sensitively, on changes in base parameter. The resulting variations in the solution are physically displayed in various wave properties with differences found dependent on which property (e.g. the wave amplitude, speed, its profile, excess mass, momentum, and energy), on what range in value of the base, and on the rank of the order n in the expansion being addressed. Secondly, regarding convergence, the present perturbation series is found definitely asymptotic in nature, with the relative error δ (n) (the relative mean-square difference between successive orders n of wave elevations) reaching a minimum, δm at a specific order, n = n both depending on the base adopted, e.g. nm,α= 11-12 based on parameter α (wave amplitude), nm,δ = 15 on δ (amplitude-speed square ratio), and nm.ε= 17 on ε ( wave number squared). The asymptotic range is brought to completion by the highest order of n = 18 reached in this work.展开更多
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do...A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.展开更多
Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is...Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is investigated based onwave motion theories; in addition, the experimental study of the hull plate load is carried out. According to the theoreticalanalysis of the hull plate pressure, we find that the hull plate pressure oscillates repeatedly and decays rapidly with timepassing, the maximum hull plate pressure is 2/(1+n) times the maximum free field pressure, where n is the ratio ofimpedance, and the impulse is much smaller than the free field impulse. Compared with the experimental study, thetheoretical results agree well with the experimental data.展开更多
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement...In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.展开更多
In this paper, the scattering of harmonic antiplane shear waves bytwo finite cracks is studied using the non-local theory. The Fouriertransform is applied and a mixed boundary value prob- lem isformulated. Then a set ...In this paper, the scattering of harmonic antiplane shear waves bytwo finite cracks is studied using the non-local theory. The Fouriertransform is applied and a mixed boundary value prob- lem isformulated. Then a set of triple integral equations is solved using anew method, namely Schimidt's method. This method is more exact andmore reasonable than Erigen's for solving this Kind of problem. Theresult of the stress near the crack tip was obtained. Contrary to theclassical elas- Ticity solution, it is found that no stresssingularity is present at the crack tip, which can explain theProblem of macroscopic and microscopic mechanics.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a...Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.展开更多
基金The project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200428)the National Natural Science Foundation of China (10272072and 50424913)the Shanghai Natural Science Foundation(05ZR14048)
文摘A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.
基金financially supported by the Science Council Taiwan (Grant No. NSC-96-2221-E006-329-MY3)partly supported by the Research Center of Ocean Environment and Technology NCKU
文摘This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional- Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
文摘The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength λ=0.25 , an average height H<sub>e</sub>=10 and a Froude number fixed at 1 × 10<sup>5</sup>. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105. .
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.
基金Project supported by the National Natural Science Foundation of Sichuan Province of China(Nos. 2022NSFSC2003, 23NSFSC0849, and 2023NSFSC1300)。
文摘This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices.
基金funded by the National Natural Science Foundation of China(No.51809135)the Shandong Provincial Natural Science Foundation(No.ZR2018BEE 047)+1 种基金the National Natural Science Foundation of China–Shandong Joint Fund(No.U2006229)the SKL of HESS(No.HESS-1808).
文摘The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金supported by National Natural Science Foundation of China (No.62001135)the Joint funds for Regional Innovation and Development of the National Natural Science Foundation of China(No.U21A20449)the Beijing Natural Science Foundation Haidian Original Innovation Joint Fund (No.L232002)
文摘UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.51138001)China-Germany joint research project(Grant No.GZ566)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(Grant No.shlhse-2010-C-03)
文摘In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.
文摘Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy.
基金by the National Natural Science Foundation of China(50039010)the Science and Technology Development Foundation of Shanghai Municipal Government(00XD14015)
文摘Very Large Floating Structures (VLFS) have drawn considerable attention recently due to their potential significance in the exploitation of ocean resources and in the utilization of ocean space. Efficient and accurate estimation of their hydroelastic responses to waves is very important for the design. Recently, an efficient numerical algorithm was developed by Ertekin and Kim (1999). However, in their analysis, the linear Level I Green-Naghdi (GN) theory is employed to describe fluid dynamics instead of the conventional linear wave (LW) theory of finite water depth. They claimed that this linear level I GN theory provided better predictions of the hydroelastic responses of VLFS than the linear wave theory. In this paper, a detailed derivation is given in the conventional linear wave theory framework with the same quantity as used in the linear level I GN theory framework. This allows a critical comparison between the linear wave theory and the linear level I GN theory. It is found that the linear level I GN theory can be regarded as an approximation to the linear wave theory of finite water depth. The consequences of the differences between these two theories in the predicted hydroelastic responses are studied quantitatively. And it is found that the linear level I GN theory is not superior to the linear wave theory. Finally, various factors affecting the hydroelastic response of VLFS are studied with the implemented algorithm.
文摘Based on Least Square Method, this paper presents variational principle for handling various water gravity wave theories and the unified water gravity wave theory was given. By using this variational principle of unified water wave theory, two kinds of improved linear waves were derived. The first one uses the same boundary conditions which were applied to derive 5-order Stokes wave. The second one uses the accurate boundary conditions (Eqs. 11 and 12). The two improved linear waves were compared with the existing linear wave.
基金The project partly supported by the National Natural Science Foundation of China(19925414,10474045)
文摘A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter family of solutions in exact form, with all the coefficients determined in rational numbers. Comparative studies are pursued to investigate the effects due to changes of base parameters on (i) the accuracy of the theoretically predicted wave properties and (ii) the rate of convergence of perturbation expansion. Two important results are found by comparisons between the theoretical predictions based on a set of parameters separately adopted for expansion in turn. First, the accuracy and the convergence of the perturbation expansions, appraised versus the exact solution provided by an earlier paper [1] as the standard reference, are found to depend, quite sensitively, on changes in base parameter. The resulting variations in the solution are physically displayed in various wave properties with differences found dependent on which property (e.g. the wave amplitude, speed, its profile, excess mass, momentum, and energy), on what range in value of the base, and on the rank of the order n in the expansion being addressed. Secondly, regarding convergence, the present perturbation series is found definitely asymptotic in nature, with the relative error δ (n) (the relative mean-square difference between successive orders n of wave elevations) reaching a minimum, δm at a specific order, n = n both depending on the base adopted, e.g. nm,α= 11-12 based on parameter α (wave amplitude), nm,δ = 15 on δ (amplitude-speed square ratio), and nm.ε= 17 on ε ( wave number squared). The asymptotic range is brought to completion by the highest order of n = 18 reached in this work.
文摘A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279038 and 51109042)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E201124)
文摘Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is investigated based onwave motion theories; in addition, the experimental study of the hull plate load is carried out. According to the theoreticalanalysis of the hull plate pressure, we find that the hull plate pressure oscillates repeatedly and decays rapidly with timepassing, the maximum hull plate pressure is 2/(1+n) times the maximum free field pressure, where n is the ratio ofimpedance, and the impulse is much smaller than the free field impulse. Compared with the experimental study, thetheoretical results agree well with the experimental data.
基金Project supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.463855/11)
文摘In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.
文摘In this paper, the scattering of harmonic antiplane shear waves bytwo finite cracks is studied using the non-local theory. The Fouriertransform is applied and a mixed boundary value prob- lem isformulated. Then a set of triple integral equations is solved using anew method, namely Schimidt's method. This method is more exact andmore reasonable than Erigen's for solving this Kind of problem. Theresult of the stress near the crack tip was obtained. Contrary to theclassical elas- Ticity solution, it is found that no stresssingularity is present at the crack tip, which can explain theProblem of macroscopic and microscopic mechanics.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
文摘Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.