Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vi...Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vibration and frequency were summarized andanalyzed. It is thought that the effect of the number of freedom face and burden direction onblasting vibration should be considered during blasting design. Based on the relevant researchresults and the regression results of these data, a formula to calculate under water blastingfrequency was put forward.展开更多
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ...The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.展开更多
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre...To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl...Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).展开更多
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact...Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.展开更多
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u...Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.展开更多
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct...The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par...A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation.展开更多
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter...Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.展开更多
Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s...Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.展开更多
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ...Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.展开更多
To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on ...To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra...A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.展开更多
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve...The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.展开更多
Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclea...Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclear.Animal models are used to study blast-induced HO,but developing such models is challenging,particularly in how to use a pure blast wave(primary blast)to induce limb fracture that then requires an amputation.Several studies,including our recent study,have developed platforms to induce limb fractures in rats with blast loading or a mixture of blast and impact loading.However,these models are limited by the survivability of the animal and repeatability of the model.In this study,we developed an improved platform,aiming to improve the animal's survivability and injury repeatability as well as focusing on primary blast only.The platform exposed only one limb of the rat to a blast wave while providing proper protection to the rest of the rat's body.We obtained very consistent fracture outcome in the tibia(location and pattern)in cadaveric rats with a large range of size and weight.Importantly,the rats did not obviously move during the test,where movement is a potential cause of uncontrolled injury.We further conducted parametric studies by varying the features of the design of the platform.These factors,such as how the limb is fixed and how the cavity through which the limb is placed is sealed,significantly affect the resulting injury.This platform and test setups enable well-controlled limb fracture induced directly by pure blast wave,which is the fundamental step towards a complete in vivo animal model for blast-induced HO induced by primary blast alone,excluding secondary and tertiary blast injury.In addition,the platform design and the findings presented here,particularly regarding the proper protection of the animal,have implications for future studies investigating localized blast injuries,such as blast induced brain and lung injuries.展开更多
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga...Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.展开更多
文摘Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vibration and frequency were summarized andanalyzed. It is thought that the effect of the number of freedom face and burden direction onblasting vibration should be considered during blasting design. Based on the relevant researchresults and the regression results of these data, a formula to calculate under water blastingfrequency was put forward.
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
文摘The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.
基金supported by the National Natural Science Foundation of China (No.52204085)the Interdisciplinary Research Project for Young Teachers of USTB,Fundamental Research Funds for the Central Universities (No.FRF-IDRY-21-006).
文摘To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
文摘Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).
基金This researchwas supported by the National Natural Science Foundation of China(No.52227805)the Fundamental Research Funds for Central Universities(No.2022JCCXLJ01).Awards were granted to the author Liyun Yang.
文摘Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.
基金financially supported by the NationalNatural Science Foundation of China(Grant No.42072309)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).
文摘Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52074298 and 52204164)Fundamental Research Funds for the Central Universities(Grant No.2022XJSB03).
文摘The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金financially supported by National Key R&D Program of China(Grant No.2020YFA0711802)National Nature Science Foundation of China(Grant Nos.51439008 and 51779248).
文摘A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation.
基金the National Natural Science Foundation of China(No.51934001).
文摘Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.
文摘Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.
基金the State Key Development Program for Basic Research of China(2016YFC0600903)the National Natural Science Foundation of China(51934001).
文摘Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-AT-19-005)the National Natural Science Foundation of China(No.51934001).
文摘To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金funded partially by the Australian Government through the Australian Research Council’s Linkage Infrastructure,Equipment and Facilities (LIEF)funding scheme (LE130100133)。
文摘A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.
基金supported by the National Natural Science Foundation of China(No.52174296)the Key Laboratory of Metallurgical Industry Safety&Risk Prevention and Control,Ministry of Emergency Management,China.
文摘The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
基金the auspices of the Royal British Legion Centre for Blast Injury Studies at Imperial College Londonthe financial support of the Royal British Legion。
文摘Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclear.Animal models are used to study blast-induced HO,but developing such models is challenging,particularly in how to use a pure blast wave(primary blast)to induce limb fracture that then requires an amputation.Several studies,including our recent study,have developed platforms to induce limb fractures in rats with blast loading or a mixture of blast and impact loading.However,these models are limited by the survivability of the animal and repeatability of the model.In this study,we developed an improved platform,aiming to improve the animal's survivability and injury repeatability as well as focusing on primary blast only.The platform exposed only one limb of the rat to a blast wave while providing proper protection to the rest of the rat's body.We obtained very consistent fracture outcome in the tibia(location and pattern)in cadaveric rats with a large range of size and weight.Importantly,the rats did not obviously move during the test,where movement is a potential cause of uncontrolled injury.We further conducted parametric studies by varying the features of the design of the platform.These factors,such as how the limb is fixed and how the cavity through which the limb is placed is sealed,significantly affect the resulting injury.This platform and test setups enable well-controlled limb fracture induced directly by pure blast wave,which is the fundamental step towards a complete in vivo animal model for blast-induced HO induced by primary blast alone,excluding secondary and tertiary blast injury.In addition,the platform design and the findings presented here,particularly regarding the proper protection of the animal,have implications for future studies investigating localized blast injuries,such as blast induced brain and lung injuries.
基金supported by the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18)。
文摘Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.