The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration inte...The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration interaction approach for the stable and short-Bved beryllium isotopes. The results provided herein can be employed for the consistency check with the nuclear rms charge radii from the experimental isotope shifts by using the correspond- ing transitions for the short-lived nuclei 7,10-12Be and 14 Be. The analogous isotope shift results could also be obtained for the beryllium-like ions by the methods used here.展开更多
Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilizati...Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilization is largely unknown.A high temporal-resolution investigation of floret primordia number and morphology,dry matter,and N availability was conducted under three N fertilization levels:0(N0),120(N1)and 240(N2)kg ha^(−1).Interestingly,fertile florets at anthesis stage were determined by those floret primordia with meiotic ability at booting stage:meiotic ability was a threshold that predicted whether a floret primordium became fertile or abortive florets.Because the developmental rate of the 4th floret primordium in the central spikelet was accelerated and then they acquired meiotic ability,the NFFs increased gradually as N application increased,but the increase range decreased under N2.There were no differences in spike N concentration among treatments,but leaf N concentration was increased in the N1 and N2 treatments.Correspondingly,dry matter accumulation and N content of the leaf and spike in the N1 and N2 treatments was increased as compared to N0.Clearly,optimal N fertilization increased leaf N availability and transport of assimilates to spikes,and allowed more floret primordia to acquire meiotic ability and become fertile florets,finally increasing NFFs.There was no difference in leaf N concentration between N1 and N2 treatment,whereas soil N concentration at 0–60 cm soil layers was higher in N2 than in N1 treatment,implying that there was still some N fertilization that remained unused.Therefore,improving the leaf’s ability to further use N fertilizer is vital for greater NFFs.展开更多
Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y...Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.展开更多
EDITOR’S NOTE: With approval from Prince Regent Dagzha. the Lhasa English School opened in the Chongyi Lingka Villa on the 11th day of the sixth Tibetan month in July 1944. There were 43 students ,10 of whom were chi...EDITOR’S NOTE: With approval from Prince Regent Dagzha. the Lhasa English School opened in the Chongyi Lingka Villa on the 11th day of the sixth Tibetan month in July 1944. There were 43 students ,10 of whom were children of ordinary people and 33 of whom were children of aristocrats. But the school survived only for five months.展开更多
The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during flor...The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.展开更多
A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicl...A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicles, the number of floral organs increased and florets cracked. The extreme phenotype was that several small florets grew from one floret or branch rachis in small florets extended and developed into panicles. By using transmission electron microscope to observe the ultrastructure of white histocytes of leaves at the seedling stage, the white tissues which showed abnormal plastids, lamellas and thylakoids could not develop into normal chloroplast, and the development of chloroplast was blocked at the early growth stage of plastid. Scanning electron microscope and paraffin section were also used to observe the development of floral organs, and the results indicated that the development of floral meristem was out of order and unlimited, whereas in the twisty leaves, vascular bundle sheath cells grew excessively, or some bubbly cells increased. Genetic analyses carried out by means of cross and backcross with four normal-leaf-color materials revealed that the mutant is of cytoplasm inheritance.展开更多
The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated th...The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated that nitrogen application in the pistil-stamen primordium formation stage and the tetrad formation stage of wheat growth prolonged the duration of floret development, promoted the balance growth of floret and reduced the floret decadence number, thus increased the grain number per spike. Nitrogen application in the middle and in the late stages of wheat development increased the photosynthetic ability of the plant leaves in the later stage, and also lengthened the peak of grain filling stage, thus enhanced the grain weight and yield of wheat significantly.展开更多
Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, name...Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, named multi-floret spikelet 3(mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate(EMS)-treated rice cultivar XIDA 1 B. In mfs3, the main body of palea(bop) was degenerated severely and only glume-like marginal regions of palea(mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation. It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3. Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene. Using 426 F2 mutants derived from the cross between sterile line 56 S and mfs3, the MULTI-FLORET SPIKELET 3(MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb. Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06 g04540 gene in the mutant, confirming preliminarily that the LOC_Os06 g04540 gene was the MFS3 candidate gene. Subsequent q PCR analysis showed that the mutation caused the down-regulation of Os MADS1 and FON1 genes, and the up-regulation of Os IDS1 and SNB genes, which are all involved in the regulation of spikelet development. The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development. These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.展开更多
Using daily maximum temperature(Tmax)data from 516 observation stations in eastern China from 1981 to 2020,this study employed a relative threshold method to define short-and long-lived heat waves(HWs)by considering r...Using daily maximum temperature(Tmax)data from 516 observation stations in eastern China from 1981 to 2020,this study employed a relative threshold method to define short-and long-lived heat waves(HWs)by considering regional climate differences to investigate the spatial characteristics and evolution of large-scale circulation during summer HWs.The results demonstrated spatial disparities in the frequency distribution of HWs of different durations and differences in the magnitude of duration and intensity between short-and long-lived HWs.Empirical orthogonal function analysis revealed three dominant spatial modes for both short-and long-lived HWs.The first mode showed that short-lived HWs occur prominently in both northern and southern regions,whereas long-lived HWs mainly occur in the northern region.The second mode was characterized by a meridional dipole pattern in both cases.The third mode exhibited a quadrupole pattern for short-lived HWs and a tripole pattern for long-lived HWs.Differences in the center locations of anomalies in the 500-hPa geopotential height and 850-hPa wind fields significantly influenced the temperature and precipitation anomaly distribution of typical HWs by affecting the warm column in the lower troposphere,cloud distribution,and moisture transport.Moreover,the atmospheric circulation evolution processes of typical HWs associated with the different modes of long-and short-lived HWs were linked to distinct teleconnection patterns.During the three modes of long-lived(short-lived)HWs,there was stronger(weaker)wave flux activity with multiple(single)propagation paths.Stronger westward Atlantic wave train activity at 300 hPa triggered the synergistic action of meridional and zonal wave fluxes,favoring the strengthening and maintenance of positive anomalies in geopotential height of 500 hPa.This may have contributed to the formation of long-lived HWs.These findings provide valuable insights to enhance our understanding and prediction of summer HWs.展开更多
基金Supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 14JK1402
文摘The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration interaction approach for the stable and short-Bved beryllium isotopes. The results provided herein can be employed for the consistency check with the nuclear rms charge radii from the experimental isotope shifts by using the correspond- ing transitions for the short-lived nuclei 7,10-12Be and 14 Be. The analogous isotope shift results could also be obtained for the beryllium-like ions by the methods used here.
基金This study was supported by the National Key Research and Development Program of China(2022YFD1900703,2022YFD2300802)the Earmarked Fund for CARS(CARS-3)+1 种基金the National Natural Science Foundation of China(31871563)China Postdoctoral Science Foundation(2022M723437).
文摘Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilization is largely unknown.A high temporal-resolution investigation of floret primordia number and morphology,dry matter,and N availability was conducted under three N fertilization levels:0(N0),120(N1)and 240(N2)kg ha^(−1).Interestingly,fertile florets at anthesis stage were determined by those floret primordia with meiotic ability at booting stage:meiotic ability was a threshold that predicted whether a floret primordium became fertile or abortive florets.Because the developmental rate of the 4th floret primordium in the central spikelet was accelerated and then they acquired meiotic ability,the NFFs increased gradually as N application increased,but the increase range decreased under N2.There were no differences in spike N concentration among treatments,but leaf N concentration was increased in the N1 and N2 treatments.Correspondingly,dry matter accumulation and N content of the leaf and spike in the N1 and N2 treatments was increased as compared to N0.Clearly,optimal N fertilization increased leaf N availability and transport of assimilates to spikes,and allowed more floret primordia to acquire meiotic ability and become fertile florets,finally increasing NFFs.There was no difference in leaf N concentration between N1 and N2 treatment,whereas soil N concentration at 0–60 cm soil layers was higher in N2 than in N1 treatment,implying that there was still some N fertilization that remained unused.Therefore,improving the leaf’s ability to further use N fertilizer is vital for greater NFFs.
基金funded by the Scientific and Technological Innovation Team Project of Seed Industry for Saline-alkali Tolerant Crop in Hebei Province(23327501D)the National Key Research and Development Program of China(2022YFD2300802,2022YFD1900703)the China Agriculture Research System(CARS-3).
文摘Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.
文摘EDITOR’S NOTE: With approval from Prince Regent Dagzha. the Lhasa English School opened in the Chongyi Lingka Villa on the 11th day of the sixth Tibetan month in July 1944. There were 43 students ,10 of whom were children of ordinary people and 33 of whom were children of aristocrats. But the school survived only for five months.
文摘The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.
基金supported by the Foundation Program,Innovative Team Development Plan of the Ministry of Education,China(Grant No.IRT0453)the Financial Gene Engineering Excellent Article Foundation Program of Sichuan Province,China(Grant No.2011LWJJ-005)
文摘A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicles, the number of floral organs increased and florets cracked. The extreme phenotype was that several small florets grew from one floret or branch rachis in small florets extended and developed into panicles. By using transmission electron microscope to observe the ultrastructure of white histocytes of leaves at the seedling stage, the white tissues which showed abnormal plastids, lamellas and thylakoids could not develop into normal chloroplast, and the development of chloroplast was blocked at the early growth stage of plastid. Scanning electron microscope and paraffin section were also used to observe the development of floral organs, and the results indicated that the development of floral meristem was out of order and unlimited, whereas in the twisty leaves, vascular bundle sheath cells grew excessively, or some bubbly cells increased. Genetic analyses carried out by means of cross and backcross with four normal-leaf-color materials revealed that the mutant is of cytoplasm inheritance.
文摘The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated that nitrogen application in the pistil-stamen primordium formation stage and the tetrad formation stage of wheat growth prolonged the duration of floret development, promoted the balance growth of floret and reduced the floret decadence number, thus increased the grain number per spike. Nitrogen application in the middle and in the late stages of wheat development increased the photosynthetic ability of the plant leaves in the later stage, and also lengthened the peak of grain filling stage, thus enhanced the grain weight and yield of wheat significantly.
基金supported by the National Natural Science Foundation of China (31271304)the National Key Research and Development Program of China (2017YFD0100202)+2 种基金the Natural Science Foundation of Chongqing, China (CSTC2017jcyj BX0062)the Graduate Student Scientific Research Innovation Projects in Chongqing, China (CYS2015066)the Fundamental Research Funds for the Central Universities, China (XDJK2016A013)
文摘Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, named multi-floret spikelet 3(mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate(EMS)-treated rice cultivar XIDA 1 B. In mfs3, the main body of palea(bop) was degenerated severely and only glume-like marginal regions of palea(mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation. It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3. Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene. Using 426 F2 mutants derived from the cross between sterile line 56 S and mfs3, the MULTI-FLORET SPIKELET 3(MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb. Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06 g04540 gene in the mutant, confirming preliminarily that the LOC_Os06 g04540 gene was the MFS3 candidate gene. Subsequent q PCR analysis showed that the mutation caused the down-regulation of Os MADS1 and FON1 genes, and the up-regulation of Os IDS1 and SNB genes, which are all involved in the regulation of spikelet development. The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development. These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.
基金Supported by the National Key Research and Development Program of China(2022YFF0801603).
文摘Using daily maximum temperature(Tmax)data from 516 observation stations in eastern China from 1981 to 2020,this study employed a relative threshold method to define short-and long-lived heat waves(HWs)by considering regional climate differences to investigate the spatial characteristics and evolution of large-scale circulation during summer HWs.The results demonstrated spatial disparities in the frequency distribution of HWs of different durations and differences in the magnitude of duration and intensity between short-and long-lived HWs.Empirical orthogonal function analysis revealed three dominant spatial modes for both short-and long-lived HWs.The first mode showed that short-lived HWs occur prominently in both northern and southern regions,whereas long-lived HWs mainly occur in the northern region.The second mode was characterized by a meridional dipole pattern in both cases.The third mode exhibited a quadrupole pattern for short-lived HWs and a tripole pattern for long-lived HWs.Differences in the center locations of anomalies in the 500-hPa geopotential height and 850-hPa wind fields significantly influenced the temperature and precipitation anomaly distribution of typical HWs by affecting the warm column in the lower troposphere,cloud distribution,and moisture transport.Moreover,the atmospheric circulation evolution processes of typical HWs associated with the different modes of long-and short-lived HWs were linked to distinct teleconnection patterns.During the three modes of long-lived(short-lived)HWs,there was stronger(weaker)wave flux activity with multiple(single)propagation paths.Stronger westward Atlantic wave train activity at 300 hPa triggered the synergistic action of meridional and zonal wave fluxes,favoring the strengthening and maintenance of positive anomalies in geopotential height of 500 hPa.This may have contributed to the formation of long-lived HWs.These findings provide valuable insights to enhance our understanding and prediction of summer HWs.