We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable ...Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.展开更多
NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of servic...NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of services(QoS).In order to improve throughput and minimum latency,aMultivariate Renkonen Regressive Weighted Preference Bootstrap Aggregation based Nonorthogonal Multiple Access(MRRWPBA-NOMA)technique is introduced for network communication.In the downlink transmission,each mobile device’s resources and their characteristics like energy,bandwidth,and trust are measured.Followed by,the Weighted Preference Bootstrap Aggregation is applied to recognize the resource-efficient mobile devices for aware data transmission by constructing the different weak hypotheses i.e.,Multivariate Renkonen Regression functions.Based on the classification,resource and trust-aware devices are selected for transmission.Simulation of the proposed MRRWPBA-NOMA technique and existing methods are carried out with different metrics such as data delivery ratio,throughput,latency,packet loss rate,and energy efficiency,signaling overhead.The simulation results assessment indicates that the proposed MRRWPBA-NOMA outperforms well than the conventional methods.展开更多
Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) ...Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.展开更多
The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundes...The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.展开更多
Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS...Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.展开更多
Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technologic...Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.展开更多
As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communicat...As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.展开更多
Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless conne...Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.展开更多
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data N...Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.展开更多
Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered sign...Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.展开更多
The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messa...The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.展开更多
Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an...Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an open environment,UAV communications benefit from dominant line-of-sight links;however,this on the other hand renders the communications more vulnerable to malicious attacks.Recently,physical layer security(PLS)has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches.In this paper,a comprehensive survey on the current achievements of UAV-PLS is conducted.We first introduce the basic concepts including typical static/-mobile UAV deployment scenarios,the unique air-toground channel and aerial nodes distribution models,as well as various roles that a UAV may act when PLS is concerned.Then,we start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems,and extend the discussion to the more general scenario where the UAVs’mobility is further exploited.For both cases,respectively,we summarize the commonly adopted methodologies,then describe important works in the litera ture in detail.Finally,potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via vario...Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.展开更多
The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all t...The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all the secret messages without being detected by an intercept-and-resend attack strategy. Furthermore, a possible improvement on this protocol is presented. It makes the modified protocol secure against this kind of attack.展开更多
Because of the advanced developments in information technology and networking, a user can easily communicate with others via the Internet. In daily life, users can buy a lot of products through the e-commerce market. ...Because of the advanced developments in information technology and networking, a user can easily communicate with others via the Internet. In daily life, users can buy a lot of products through the e-commerce market. Thus, how to protect users' private data from being compromised on the Internet has become a very important research issue in recent years.展开更多
Journal of Electronic Science and Technology (JEST) invites manuscript submissions in the area of Network and Communication Security (NCS). This special issue of JEST will focus on recent theoretical and applicati...Journal of Electronic Science and Technology (JEST) invites manuscript submissions in the area of Network and Communication Security (NCS). This special issue of JEST will focus on recent theoretical and application achievements in NCS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes to be covered include:展开更多
The realization of security wired network is very critical when the network itself must be installed in an environment full of restrictions and constrains such as historical palaces, characterized by unique architectu...The realization of security wired network is very critical when the network itself must be installed in an environment full of restrictions and constrains such as historical palaces, characterized by unique architectural features. The purpose of this paper is to illustrate an advanced installation design technique of security wired network based on genetic algorithm optimisation that is capable of ensuring high performances of the network itself and significant reduction of the costs. The same technique can be extended to safety system such as fire signalling.展开更多
Modern communication allows billions of objects in the physical world as well as virtual environments to exchange data with each other in an autonomous way so as to create smart environments. However, modern communica...Modern communication allows billions of objects in the physical world as well as virtual environments to exchange data with each other in an autonomous way so as to create smart environments. However, modern communication also introduces new challenges for the security of systems and processes and the privacy of individuals. There is an increasing demand for development of new security and privacy approaches to guarantee the security, privacy, integ- rity, and availability of resources in modern communication.展开更多
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
基金The publication is produced within the framework of Ramon Alcarria y Borja Bordel’s research projects on the occasion of their stay at Argonne Labs(Jose Castillejo’s 2021 grant)supported by the Ministry of Science,Innovation andUniversities through the COGNOS project.
文摘Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.
基金the Taif University Researchers Supporting Project number(TURSP-2020/36),Taif University,Taif,Saudi Arabiafundedby Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R97), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。
文摘NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of services(QoS).In order to improve throughput and minimum latency,aMultivariate Renkonen Regressive Weighted Preference Bootstrap Aggregation based Nonorthogonal Multiple Access(MRRWPBA-NOMA)technique is introduced for network communication.In the downlink transmission,each mobile device’s resources and their characteristics like energy,bandwidth,and trust are measured.Followed by,the Weighted Preference Bootstrap Aggregation is applied to recognize the resource-efficient mobile devices for aware data transmission by constructing the different weak hypotheses i.e.,Multivariate Renkonen Regression functions.Based on the classification,resource and trust-aware devices are selected for transmission.Simulation of the proposed MRRWPBA-NOMA technique and existing methods are carried out with different metrics such as data delivery ratio,throughput,latency,packet loss rate,and energy efficiency,signaling overhead.The simulation results assessment indicates that the proposed MRRWPBA-NOMA outperforms well than the conventional methods.
基金the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.GRANT5,208).
文摘Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.
基金funded by Taif University,Taif,Saudi Arabia,Project No.(TUDSPP-2024-139).
文摘The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.
基金supported by the National Science Fund for Young Scholars(Grant No.62201539)the Project of Innovation and Entrepreneurship Training for National Undergraduates(Grant No.202210356005)the project of Zhejiang University Student Science and Technology Innovation Activity Plan(Grant No.2023R409055)。
文摘Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.
文摘Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.
基金funded by Youth Fund of the National Natural Science Foundation of China,grant number 11504176,61601230.
文摘As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.
基金supported in part by the Natural Science Foundation of Shaanxi Province under Grant Number 2021JM-143the Fundamental Research Funds for the Central Universities under Grant Number JB211502+5 种基金the Project of Key Laboratory of Science and Technology on Communication Network under Grant Number 6142104200412the National Natural Science Foundation of China under Grant Number 61672410the Academy of Finland under Grant Number 308087the China 111 project under Grant Number B16037JSPS KAKENHI under Grant Number JP20K14742and the Project of Cyber Security Establishment with Inter University Cooperation.
文摘Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.
基金supported by the National Natural Science Foundation of China under Grant No.62032013the LiaoNing Revitalization Talents Program under Grant No.XLYC1902010.
文摘Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.
文摘Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.
基金supported in part by State Key Program of National Nature Science Foundation of China under Grant No.60932003National High Technical Research and Development Program of China (863 Program ) under Grant No.2007AA01Z452
文摘The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 61922049,61941104,61921004,62171240,61771264,62001254,61801248,61971467+2 种基金the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1the Science and Technology Program of Nantong under Grants JC2021121,JC2021017。
文摘Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an open environment,UAV communications benefit from dominant line-of-sight links;however,this on the other hand renders the communications more vulnerable to malicious attacks.Recently,physical layer security(PLS)has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches.In this paper,a comprehensive survey on the current achievements of UAV-PLS is conducted.We first introduce the basic concepts including typical static/-mobile UAV deployment scenarios,the unique air-toground channel and aerial nodes distribution models,as well as various roles that a UAV may act when PLS is concerned.Then,we start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems,and extend the discussion to the more general scenario where the UAVs’mobility is further exploited.For both cases,respectively,we summarize the commonly adopted methodologies,then describe important works in the litera ture in detail.Finally,potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
文摘Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800131016)+3 种基金the Foundation for Key Program of Ministry of Education of China (Grant No. 109014)the Beijing Nova Program, China (Grant No. 2008B51)the China Post-Doctoral Science Foundation (Grant No. 20090450018)the Natural Science Foundation of Beijing, China (Grant No. 4072020)
文摘The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all the secret messages without being detected by an intercept-and-resend attack strategy. Furthermore, a possible improvement on this protocol is presented. It makes the modified protocol secure against this kind of attack.
文摘Because of the advanced developments in information technology and networking, a user can easily communicate with others via the Internet. In daily life, users can buy a lot of products through the e-commerce market. Thus, how to protect users' private data from being compromised on the Internet has become a very important research issue in recent years.
文摘Journal of Electronic Science and Technology (JEST) invites manuscript submissions in the area of Network and Communication Security (NCS). This special issue of JEST will focus on recent theoretical and application achievements in NCS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes to be covered include:
文摘The realization of security wired network is very critical when the network itself must be installed in an environment full of restrictions and constrains such as historical palaces, characterized by unique architectural features. The purpose of this paper is to illustrate an advanced installation design technique of security wired network based on genetic algorithm optimisation that is capable of ensuring high performances of the network itself and significant reduction of the costs. The same technique can be extended to safety system such as fire signalling.
文摘Modern communication allows billions of objects in the physical world as well as virtual environments to exchange data with each other in an autonomous way so as to create smart environments. However, modern communication also introduces new challenges for the security of systems and processes and the privacy of individuals. There is an increasing demand for development of new security and privacy approaches to guarantee the security, privacy, integ- rity, and availability of resources in modern communication.