Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potent...This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction.展开更多
Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the poten...Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the potential rangeρ=14 and the number of atoms N up to 400.All the putative global minima reported in the literature have been successfully reproduced with relatively high success ratios.Compared to the available results for N≤240 and several larger Morse clusters,new global minima(and local minima)with lower energies have been found out for N=164,175,188,193,194,197,239,246,260,318,and 389.Clusters with magic numbers are figured out through fitting the size-dependent global minimum energies.The cluster structures tend to be close-packed for short-range potential with large N.展开更多
Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using ...Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using standard parametrizations. The investigation is based on Density Functional Theory and Tight Binding simulations. Our objective is not only to capture the values of the repulsive terms but also to efficiently reproduce the elastic properties and the forces. The elasticity values determine the rigidity of a material when some traction or load is applied on it. The pair-potential is based on an exponential term corrected by B-spline terms. In order to accelerate the computations, one uses a hierarchical optimization for the B-splines on different levels. Carbon graphenes constitute the configurations used in the simulations. We report on some results to show the efficiency of the B-splines on different levels.展开更多
Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using ...Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using standard parametrizations. The investigation is based on Density Functional Theory and Tight Binding simulations. Our objective is not only to capture the values of the repulsive terms but also to efficiently reproduce the elastic properties and the forces. The elasticity values determine the rigidity of a material when some traction or load is applied on it. The pair-potential is based on an exponential term corrected by B-spline terms. In order to accelerate the computations, one uses a hierarchical optimization for the B-splines on different levels. Carbon graphenes constitute the configurations used in the simulations. We report on some results to show the efficiency of the B-splines on different levels.展开更多
An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using f...An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using first-principles calculations.However,TB approaches still have limited applicability for determining material properties derived from the total energy.That is,the predictive power of the TB total energy is impaired by an inaccurate evaluation of the repulsive energy.The complexity associated with the parametrization of TB repulsive potentials is the weak link in this evaluation.In this study,we propose a new method for obtaining the pairwise TB repulsive potential for crystalline materials by employing the Chen-Möbius inversion theorem.We show that the TB-based phonon dispersions,calculated using the resulting repulsive potential,compare well with those obtained by first-principles calculations for various systems,including covalent and ionic bulk materials and twodimensional materials.The present approach only requires the first-principles total energy and TB electronic band energy as input and does not involve any parameters.This striking feature enables us to generate repulsive potentials programmatically.展开更多
针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数...针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数,实时调整对目标点进行采样的概率以达到自适应目标导向的效果,减少了无用节点的生成,提高了收敛速度。其次,采用贪婪收敛策略,防止了随机树在目标周围时的盲目扩张。搜索结束后,采用节点剔除法剔除路径中的冗余节点,并用B样条曲线对轨迹进行平滑处理,提高了路径质量。然后在二维、三维环境中进行了对比仿真实验,验证了该算法的可行性与优越性。最后进行了样机实验,验证了所提算法在机械臂关节空间进行路径规划的可行性。展开更多
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani...Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10774093 and 10374061)
文摘This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction.
基金supported by the National Natural Science Foundation of China(No.21803053)the Natural Science Foundation of Zhejiang Province,China(No.LY20B030005)the Open Project Fund of Key Laboratory of Excited-State Materials of Zhejiang Province。
文摘Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the potential rangeρ=14 and the number of atoms N up to 400.All the putative global minima reported in the literature have been successfully reproduced with relatively high success ratios.Compared to the available results for N≤240 and several larger Morse clusters,new global minima(and local minima)with lower energies have been found out for N=164,175,188,193,194,197,239,246,260,318,and 389.Clusters with magic numbers are figured out through fitting the size-dependent global minimum energies.The cluster structures tend to be close-packed for short-range potential with large N.
文摘Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using standard parametrizations. The investigation is based on Density Functional Theory and Tight Binding simulations. Our objective is not only to capture the values of the repulsive terms but also to efficiently reproduce the elastic properties and the forces. The elasticity values determine the rigidity of a material when some traction or load is applied on it. The pair-potential is based on an exponential term corrected by B-spline terms. In order to accelerate the computations, one uses a hierarchical optimization for the B-splines on different levels. Carbon graphenes constitute the configurations used in the simulations. We report on some results to show the efficiency of the B-splines on different levels.
文摘Quantum energies which are used in applications are usually composed of repulsive and attractive terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy instead of using standard parametrizations. The investigation is based on Density Functional Theory and Tight Binding simulations. Our objective is not only to capture the values of the repulsive terms but also to efficiently reproduce the elastic properties and the forces. The elasticity values determine the rigidity of a material when some traction or load is applied on it. The pair-potential is based on an exponential term corrected by B-spline terms. In order to accelerate the computations, one uses a hierarchical optimization for the B-splines on different levels. Carbon graphenes constitute the configurations used in the simulations. We report on some results to show the efficiency of the B-splines on different levels.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274035,and 11874088)supported by the Fundamental Research Funds for the Central Universities。
文摘An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using first-principles calculations.However,TB approaches still have limited applicability for determining material properties derived from the total energy.That is,the predictive power of the TB total energy is impaired by an inaccurate evaluation of the repulsive energy.The complexity associated with the parametrization of TB repulsive potentials is the weak link in this evaluation.In this study,we propose a new method for obtaining the pairwise TB repulsive potential for crystalline materials by employing the Chen-Möbius inversion theorem.We show that the TB-based phonon dispersions,calculated using the resulting repulsive potential,compare well with those obtained by first-principles calculations for various systems,including covalent and ionic bulk materials and twodimensional materials.The present approach only requires the first-principles total energy and TB electronic band energy as input and does not involve any parameters.This striking feature enables us to generate repulsive potentials programmatically.
文摘针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数,实时调整对目标点进行采样的概率以达到自适应目标导向的效果,减少了无用节点的生成,提高了收敛速度。其次,采用贪婪收敛策略,防止了随机树在目标周围时的盲目扩张。搜索结束后,采用节点剔除法剔除路径中的冗余节点,并用B样条曲线对轨迹进行平滑处理,提高了路径质量。然后在二维、三维环境中进行了对比仿真实验,验证了该算法的可行性与优越性。最后进行了样机实验,验证了所提算法在机械臂关节空间进行路径规划的可行性。
文摘Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.