期刊文献+
共找到1,922篇文章
< 1 2 97 >
每页显示 20 50 100
Improving the Short-Range Precipitation Forecast of Numerical Weather Prediction through a Deep Learning-Based Mask Approach
1
作者 Jiaqi ZHENG Qing LING +1 位作者 Jia LI Yerong FENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1601-1613,共13页
Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ... Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models. 展开更多
关键词 deep learning numerical weather prediction(NWP) 6-hour quantitative precipitation forecast
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
2
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
An Implementation of Full Cycle Strategy Using Dynamic Blending for Rapid Refresh Short-range Weather Forecasting in China 被引量:3
3
作者 Jin FENG Min CHEN +1 位作者 Yanjie LI Jiqin ZHONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期943-956,共14页
The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global mode... The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global model(GM)forecasts to correct the large-scale drift,it has replaced the traditional full cycle(FC)strategy in many RRC systems.However,the extra spin-up in the PC strategy increases the computer burden on RRC and generates discontinuous smallscale systems among cycles.This study returns to the FC strategy but with initial fields generated by dynamic blending(DB)and data assimilation(DA).The DB ingests the time-varied large-scale information from the GM to the RM to generate less-biased background fields.Then the DA is performed.We applied the new FC strategy in a series of 7-day batch forecasts with the 3-hour cycle in July 2018,and February,April,and October 2019 over China using a Weather Research and Forecast(WRF)model-based RRC.A comparison shows that the new FC strategy results in less model bias than the PC strategy in most state variables and improves the forecast skills for moderate and light precipitation.The new FC strategy also allows the model to reach a balanced state earlier and gives favorable forecast continuity between adjacent cycles.Hence,this new FC strategy has potential to be applied in RRC forecast systems to replace the currently used PC strategy. 展开更多
关键词 rapid refresh weather forecast full cycle BLENDING
下载PDF
Bias-Corrected Short-Range Ensemble Forecasts for Near-Surface Variables during the Summer Season of 2010 in Northern China 被引量:2
4
作者 ZHU Jiang-Shan KONG Fan-You LEI Heng-Chi 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期334-339,共6页
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no... A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble. 展开更多
关键词 short-range ensemble forecast bias-corrected ensemble forecast running mean bias correction near-surface variable forecast
下载PDF
Comparison of different land-surface perturbation methods in short-range ensemble forecasts
5
作者 Zhibo Gao Jiangshan Zhu +4 位作者 Yan Guo Xiaodong Yan Xiujuan Wang Huoqing Li Shuwen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第3期60-65,共6页
In order to compare the sensitivity of short-range ensemble forecasts to different land-surface parameters in the South China region,three perturbation experiments related to the land surface model(LSM),initial soil m... In order to compare the sensitivity of short-range ensemble forecasts to different land-surface parameters in the South China region,three perturbation experiments related to the land surface model(LSM),initial soil moisture(ISM),and land–atmosphere coupling coefficient(LCC)were designed,and another control experiment driven by the Global Ensemble Forecast System(GEFS)was also performed.All ensemble members were initiated at 0000 UTC each day,and integrated for 24 h for a total of 40 days from the period 1 April to 10 May 2019 based on the Weather Research and Forecasting model.The results showed that the perturbation experiment of the LSM(LSMPE)had the largest ensemble spread,as well as the lowest ensemble-mean root-mean-square error among the three sets of land-surface perturbed experiments,which indicated that it could represent more uncertainty and less error.The ensemble spread of the perturbation experiment of the ISM(ISMPE)was generally less than that of LSMPE but greater than that of LCCPE(the perturbation experiment of the LCC).In particular,although the perturbation of the LCC could not produce greater spread,it had an effective influence on the intensity of precipitation.However,the ensemble spread of all the land-surface perturbed experiments was smaller than that of GEFSPE(the control experiment).Therefore,in future,land-surface perturbations and atmospheric perturbations should be combined in the design of ensemble forecasting systems to make the model represent more uncertainties. 展开更多
关键词 short-range ensemble forecast Land-surface parameter South china region
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
6
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity weather
下载PDF
APPLICATION EXPERIMENT OF ASSIMILATING RADAR-RETRIEVED WATER VAPOR IN SHORT-RANGE FORECAST OF RAINFALL IN THE ANNUALLY FIRST RAINY SEASON OVER SOUTH CHINA 被引量:2
7
作者 张诚忠 陈子通 +4 位作者 万齐林 林振敏 黄燕燕 戴光丰 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2016年第4期578-588,共11页
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila... A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance. 展开更多
关键词 radar-retrieved water vapor RAINFALL in annually FIRST RAINY season short-range forecast data assimilation
下载PDF
Evaluating the Robustness of MDSS Maintenance Forecasts Using Connected Vehicle Data
8
作者 Gregory L. Brinster Jairaj Desai +5 位作者 Myles W. Overall Christopher Gartner Rahul Suryakant Sakhare Jijo K. Mathew Nick Evans Darcy Bullock 《Journal of Transportation Technologies》 2024年第4期549-569,共21页
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec... The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond. 展开更多
关键词 weather forecasting Winter weather Connected Vehicle Data After-Action Report
下载PDF
Sensitivity of Medium-Range Weather Forecasts to the Use of Reference Atmosphere 被引量:2
9
作者 陈嘉滨 A.J.Simmons 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第3期275-293,共19页
In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represen... In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represented variables, temperature, geopotential height and orography, are replaced by their deviations from the reference atmosphere. Two modified semi- implicit schemes have been proposed to alleviate the computational instability due to the introduction of reference atmosphere. Concerning the deviation of surface geopotential height from reference atmosphere, an exact computational formulation has been used instead of the approximate one in the earlier work. To re duce aliasing errors in the computations of the deviation of the surface geopotential height, a spectral fit has been used slightly to modify the original Gaussian grid-point values of orography.A series of experiments has been performed in order to assess the impact of the reference atmosphere on ECMWF medium- range forecasts at the resolution T21, T42 and T63. The results we have obtained reveal that the reference atmosphere introduced in ECMWF spectral model is generally beneficial to the mean statistical scores of 1000-200 hPa height 10-day forecasts over the globe. In the Southern Hemisphere, it is a clear improvement for T21, T42 and T63 throughout the 10-day forecast period. In the Northern Hemisphere, the impact of the reference atmos phere on anomaly correlation is positive for resolution T21, a very slightly damaging at T42 and almost neutral at T63 in the range of day 1 to day 4. Beyond the day 4 there is a clear improvement at all resolutions. 展开更多
关键词 Sensitivity of Medium-Range weather forecasts to the Use of Reference Atmosphere ECMWF
下载PDF
Artificial Intelligence Based Solar Radiation Predictive Model Using Weather Forecasts
10
作者 Sathish Babu Pandu A.Sagai Francis Britto +4 位作者 Pudi Sekhar P.Vijayarajan Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2022年第4期109-124,共16页
Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and mana... Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison. 展开更多
关键词 Solar irradiation prediction weather forecast artificial intelligence Elman neural network mayfly optimization
下载PDF
Quantum Atmospheric Biophysics: A Comparison of Four Weather Stations in India on Average Monthly Temperatures Since 1892 and Forecasts to 2150
11
作者 Mazurkin Peter Matveevich 《Journal of Environmental & Earth Sciences》 2023年第1期17-32,共16页
The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations ... The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming. 展开更多
关键词 INDIA 4 weather stations Average monthly temperature Waves of behavior Sum of wavelets Verification forecasts
下载PDF
A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area 被引量:17
12
作者 Haochen LI Chen YU +3 位作者 Jiangjiang XIA Yingchun WANG Jiang ZHU Pingwen ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1156-1170,共15页
In this paper, the model output machine learning (MOML) method is proposed for simulating weather consultation, which can improve the forecast results of numerical weather prediction (NWP). During weather consultation... In this paper, the model output machine learning (MOML) method is proposed for simulating weather consultation, which can improve the forecast results of numerical weather prediction (NWP). During weather consultation, the forecasters obtain the final results by combining the observations with the NWP results and giving opinions based on their experience. It is obvious that using a suitable post-processing algorithm for simulating weather consultation is an interesting and important topic. MOML is a post-processing method based on machine learning, which matches NWP forecasts against observations through a regression function. By adopting different feature engineering of datasets and training periods, the observational and model data can be processed into the corresponding training set and test set. The MOML regression function uses an existing machine learning algorithm with the processed dataset to revise the output of NWP models combined with the observations, so as to improve the results of weather forecasts. To test the new approach for grid temperature forecasts, the 2-m surface air temperature in the Beijing area from the ECMWF model is used. MOML with different feature engineering is compared against the ECMWF model and modified model output statistics (MOS) method. MOML shows a better numerical performance than the ECMWF model and MOS, especially for winter. The results of MOML with a linear algorithm, running training period, and dataset using spatial interpolation ideas, are better than others when the forecast time is within a few days. The results of MOML with the Random Forest algorithm, year-round training period, and dataset containing surrounding gridpoint information, are better when the forecast time is longer. 展开更多
关键词 temperature forecasts MOS machine learning multiple linear regression RANDOM FOREST weather CONSULTATION feature engineering data structures
下载PDF
A STUDY OF THE INFLUENCE OF MICROPHYSICAL PROCESSES ON TYPHOON NIDA(2016) USING A NEW DOUBLE-MOMENT MICROPHYSICS SCHEME IN THE WEATHER RESEARCH AND FORECASTING MODEL 被引量:5
13
作者 LI Zhe ZHANG Yu-tao +2 位作者 LIU Qi-jun FU Shi-zuo MA Zhan-shan 《Journal of Tropical Meteorology》 SCIE 2018年第2期123-130,共8页
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium... The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required. 展开更多
关键词 Liuma microphysics scheme typhoon intensity cloud microphysics typhoon structure weather Research and forecasting model
下载PDF
Probability Forecast of Regional Landslide Based on Numerical Weather Forecast 被引量:2
14
作者 GAO Kechang WEI Fangqiang +4 位作者 CUI Peng HU Kaiheng XU Jing ZHANG Guoping BI Baogu 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期853-858,共6页
The regional forecast of landslide is one of the key points of hazard mitigation. It is also a hot and difficult point in research field. To solve this problem has become urgent task along with Chinese economy fast de... The regional forecast of landslide is one of the key points of hazard mitigation. It is also a hot and difficult point in research field. To solve this problem has become urgent task along with Chinese economy fast development. This paper analyzes the principle of regional landslide forecast and the factors for forecasting. The method of a combination of Information Value Model and Extension Model has been put forward to be as the forecast model. Using new result of Numerical Weather Foreeast Research and that combination model, we discuss the implementation feasibility of regional landslide forecast. Finally, with the help of Geographic Information System, an operation system for southwest of China landslide forecast has been developed. It can carry out regional landslide forecast daily and has been pilot run in NMC. Since this is the first time linking theoretical research with meteorological service, further works are needed to enhance it. 展开更多
关键词 hazard mitigation LANDSLIDE forecast numerical weather forecast GIS
下载PDF
MULTIMODEL CONSENSUS FORECASTING OF LOW TEMPERATURE AND ICY WEATHER OVER CENTRAL AND SOUTHERN CHINA IN EARLY 2008 被引量:3
15
作者 张玲 智协飞 《Journal of Tropical Meteorology》 SCIE 2015年第1期67-75,共9页
Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing condition... Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean. 展开更多
关键词 multimodel consensus forecasting extreme low temperature and icy weather event forecast skills
下载PDF
Evaluation of Tianji and ECMWF high-resolution precipitation forecasts for extreme rainfall event in Henan in July 2021 被引量:2
16
作者 Wen-tao Li Jia-peng Zhang +1 位作者 Ruo-chen Sun Qingyun Duan 《Water Science and Engineering》 EI CAS CSCD 2023年第2期122-131,共10页
The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predict... The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future. 展开更多
关键词 Extreme precipitation High-resolution weather forecast EVALUATION Flood forecasting Spatial forecast verification
下载PDF
Shallow Analysis on the First Spring Soaking Rain Weather and Its Precipitation Enhancement Potential Forecast in Jinzhou Area in 2010 被引量:2
17
作者 LI Zhuo-li, YAN Zhi-yu, YANG Gui-juan Jinzhou Meteorological Bureau in Liaoning Province, Jinzhou 121000, China 《Meteorological and Environmental Research》 CAS 2011年第4期42-46,共5页
[Objective] The research aimed to study the first spring soaking rain weather and its precipitation enhancement potential forecast in Jinzhou area in 2010. [Method] From the weather situation characteristics, main inf... [Objective] The research aimed to study the first spring soaking rain weather and its precipitation enhancement potential forecast in Jinzhou area in 2010. [Method] From the weather situation characteristics, main influence system, forecast service, artificial precipitation enhancement operation and so on, the first spring soaking rain weather process in Jinzhou area in 2010 was summarized comprehensively. [Result] The weather situation characteristics of soaking rain were that the high-altitude cold air was weak, and the low-level warm wet airflow was obvious. The main influence systems were the high-altitude trough, the high-altitude shear line and the ground Mongolian cyclone. The ground inverted trough system advanced northward and got through with the same phase of Mongolian cyclone, which provided the certain energy and water vapor for the precipitation in Jinzhou area. It was one of key reasons for generating the soaking rain. The numerical forecast product played the certain guidance role in the forecast service work. The situation field forecast was accurate, but the precipitation forecast deviation was big. Therefore, the forecast service couldn’t depend on the numerical forecast product simply and totally, and should combine with the actual monitoring data to analyze and apply comprehensively. [Conclusion] The research played the safeguarding role in carrying out the large-scale artificial precipitation enhancement operation successfully in the whole area of Jinzhou. 展开更多
关键词 Spring soaking rain weather situation Precipitation enhancement potential forecast service Jinzhou area China
下载PDF
Machine Learning of Weather Forecasting Rules from Large Meteorological Data Bases 被引量:1
18
作者 Honghua DaiDepartment of Computer Science,Monash University,Australia,dai@ brucc.cs.monash.edu.au 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1996年第4期471-488,共18页
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h... Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively 展开更多
关键词 weather forecasting Machine learning Machine discovery Meteorological expert system Meteorological knowledge processing Automatic forecasting
下载PDF
Meteorological observations and weather forecasting services of the CHINARE 被引量:2
19
作者 SUN Qizhen ZHANG Lin +3 位作者 MENG Shang SHEN Hui DING Zhuoming ZHANG Zhanhai 《Advances in Polar Science》 2018年第4期291-299,共9页
By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been u... By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been undertaken to promote the development of techniques for the observation of surface and upper-air meteorological elements, and satellite image and data reception systems at Chinese Antarctic stations and onboard Chinese icebreakers have played critical roles in this endeavor. The upgrade of in situ and remote sensing measurement methods and the improvement of weather forecasting skill have enabled forecasters to achieve reliable on-site weather forecasting for the CHINARE. Nowadays, the routing of icebreakers, navigation of aircraft, and activities at Chinese Antarctic stations all benefit from the accurate weather forecasting service. In this paper, a review of the conventional meteorological measurement and operational weather forecasting services of the CHINARE is presented. 展开更多
关键词 Chinese National Antarctic Research Expedition (CHINARE) meteorological observations weather forecasting services
下载PDF
A Methodological Study on Using Weather Research and Forecasting(WRF) Model Outputs to Drive a One-Dimensional Cloud Model 被引量:1
20
作者 JIN Ling Fanyou KONG +1 位作者 LEI Hengchi HU Zhaoxia 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期230-240,共11页
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ... A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept. 展开更多
关键词 cloud-seeding model weather Research and forecasting (WRF) model rain enhancement
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部