Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ...Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global mode...The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global model(GM)forecasts to correct the large-scale drift,it has replaced the traditional full cycle(FC)strategy in many RRC systems.However,the extra spin-up in the PC strategy increases the computer burden on RRC and generates discontinuous smallscale systems among cycles.This study returns to the FC strategy but with initial fields generated by dynamic blending(DB)and data assimilation(DA).The DB ingests the time-varied large-scale information from the GM to the RM to generate less-biased background fields.Then the DA is performed.We applied the new FC strategy in a series of 7-day batch forecasts with the 3-hour cycle in July 2018,and February,April,and October 2019 over China using a Weather Research and Forecast(WRF)model-based RRC.A comparison shows that the new FC strategy results in less model bias than the PC strategy in most state variables and improves the forecast skills for moderate and light precipitation.The new FC strategy also allows the model to reach a balanced state earlier and gives favorable forecast continuity between adjacent cycles.Hence,this new FC strategy has potential to be applied in RRC forecast systems to replace the currently used PC strategy.展开更多
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no...A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.展开更多
In order to compare the sensitivity of short-range ensemble forecasts to different land-surface parameters in the South China region,three perturbation experiments related to the land surface model(LSM),initial soil m...In order to compare the sensitivity of short-range ensemble forecasts to different land-surface parameters in the South China region,three perturbation experiments related to the land surface model(LSM),initial soil moisture(ISM),and land–atmosphere coupling coefficient(LCC)were designed,and another control experiment driven by the Global Ensemble Forecast System(GEFS)was also performed.All ensemble members were initiated at 0000 UTC each day,and integrated for 24 h for a total of 40 days from the period 1 April to 10 May 2019 based on the Weather Research and Forecasting model.The results showed that the perturbation experiment of the LSM(LSMPE)had the largest ensemble spread,as well as the lowest ensemble-mean root-mean-square error among the three sets of land-surface perturbed experiments,which indicated that it could represent more uncertainty and less error.The ensemble spread of the perturbation experiment of the ISM(ISMPE)was generally less than that of LSMPE but greater than that of LCCPE(the perturbation experiment of the LCC).In particular,although the perturbation of the LCC could not produce greater spread,it had an effective influence on the intensity of precipitation.However,the ensemble spread of all the land-surface perturbed experiments was smaller than that of GEFSPE(the control experiment).Therefore,in future,land-surface perturbations and atmospheric perturbations should be combined in the design of ensemble forecasting systems to make the model represent more uncertainties.展开更多
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,...Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.展开更多
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila...A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.展开更多
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec...The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.展开更多
In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represen...In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represented variables, temperature, geopotential height and orography, are replaced by their deviations from the reference atmosphere. Two modified semi- implicit schemes have been proposed to alleviate the computational instability due to the introduction of reference atmosphere. Concerning the deviation of surface geopotential height from reference atmosphere, an exact computational formulation has been used instead of the approximate one in the earlier work. To re duce aliasing errors in the computations of the deviation of the surface geopotential height, a spectral fit has been used slightly to modify the original Gaussian grid-point values of orography.A series of experiments has been performed in order to assess the impact of the reference atmosphere on ECMWF medium- range forecasts at the resolution T21, T42 and T63. The results we have obtained reveal that the reference atmosphere introduced in ECMWF spectral model is generally beneficial to the mean statistical scores of 1000-200 hPa height 10-day forecasts over the globe. In the Southern Hemisphere, it is a clear improvement for T21, T42 and T63 throughout the 10-day forecast period. In the Northern Hemisphere, the impact of the reference atmos phere on anomaly correlation is positive for resolution T21, a very slightly damaging at T42 and almost neutral at T63 in the range of day 1 to day 4. Beyond the day 4 there is a clear improvement at all resolutions.展开更多
Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and mana...Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.展开更多
The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations ...The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.展开更多
In this paper, the model output machine learning (MOML) method is proposed for simulating weather consultation, which can improve the forecast results of numerical weather prediction (NWP). During weather consultation...In this paper, the model output machine learning (MOML) method is proposed for simulating weather consultation, which can improve the forecast results of numerical weather prediction (NWP). During weather consultation, the forecasters obtain the final results by combining the observations with the NWP results and giving opinions based on their experience. It is obvious that using a suitable post-processing algorithm for simulating weather consultation is an interesting and important topic. MOML is a post-processing method based on machine learning, which matches NWP forecasts against observations through a regression function. By adopting different feature engineering of datasets and training periods, the observational and model data can be processed into the corresponding training set and test set. The MOML regression function uses an existing machine learning algorithm with the processed dataset to revise the output of NWP models combined with the observations, so as to improve the results of weather forecasts. To test the new approach for grid temperature forecasts, the 2-m surface air temperature in the Beijing area from the ECMWF model is used. MOML with different feature engineering is compared against the ECMWF model and modified model output statistics (MOS) method. MOML shows a better numerical performance than the ECMWF model and MOS, especially for winter. The results of MOML with a linear algorithm, running training period, and dataset using spatial interpolation ideas, are better than others when the forecast time is within a few days. The results of MOML with the Random Forest algorithm, year-round training period, and dataset containing surrounding gridpoint information, are better when the forecast time is longer.展开更多
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium...The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.展开更多
The regional forecast of landslide is one of the key points of hazard mitigation. It is also a hot and difficult point in research field. To solve this problem has become urgent task along with Chinese economy fast de...The regional forecast of landslide is one of the key points of hazard mitigation. It is also a hot and difficult point in research field. To solve this problem has become urgent task along with Chinese economy fast development. This paper analyzes the principle of regional landslide forecast and the factors for forecasting. The method of a combination of Information Value Model and Extension Model has been put forward to be as the forecast model. Using new result of Numerical Weather Foreeast Research and that combination model, we discuss the implementation feasibility of regional landslide forecast. Finally, with the help of Geographic Information System, an operation system for southwest of China landslide forecast has been developed. It can carry out regional landslide forecast daily and has been pilot run in NMC. Since this is the first time linking theoretical research with meteorological service, further works are needed to enhance it.展开更多
Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing condition...Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.展开更多
The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predict...The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.展开更多
[Objective] The research aimed to study the first spring soaking rain weather and its precipitation enhancement potential forecast in Jinzhou area in 2010. [Method] From the weather situation characteristics, main inf...[Objective] The research aimed to study the first spring soaking rain weather and its precipitation enhancement potential forecast in Jinzhou area in 2010. [Method] From the weather situation characteristics, main influence system, forecast service, artificial precipitation enhancement operation and so on, the first spring soaking rain weather process in Jinzhou area in 2010 was summarized comprehensively. [Result] The weather situation characteristics of soaking rain were that the high-altitude cold air was weak, and the low-level warm wet airflow was obvious. The main influence systems were the high-altitude trough, the high-altitude shear line and the ground Mongolian cyclone. The ground inverted trough system advanced northward and got through with the same phase of Mongolian cyclone, which provided the certain energy and water vapor for the precipitation in Jinzhou area. It was one of key reasons for generating the soaking rain. The numerical forecast product played the certain guidance role in the forecast service work. The situation field forecast was accurate, but the precipitation forecast deviation was big. Therefore, the forecast service couldn’t depend on the numerical forecast product simply and totally, and should combine with the actual monitoring data to analyze and apply comprehensively. [Conclusion] The research played the safeguarding role in carrying out the large-scale artificial precipitation enhancement operation successfully in the whole area of Jinzhou.展开更多
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h...Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively展开更多
By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been u...By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been undertaken to promote the development of techniques for the observation of surface and upper-air meteorological elements, and satellite image and data reception systems at Chinese Antarctic stations and onboard Chinese icebreakers have played critical roles in this endeavor. The upgrade of in situ and remote sensing measurement methods and the improvement of weather forecasting skill have enabled forecasters to achieve reliable on-site weather forecasting for the CHINARE. Nowadays, the routing of icebreakers, navigation of aircraft, and activities at Chinese Antarctic stations all benefit from the accurate weather forecasting service. In this paper, a review of the conventional meteorological measurement and operational weather forecasting services of the CHINARE is presented.展开更多
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ...A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.展开更多
基金jointly supported by the National Natural Science Foundation of China(Grant No.U1811464)the Hydraulic Innovation Project of Science and Technology of Guangdong Province of China(Grant No.2022-01)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011472)。
文摘Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
基金the two anonymous reviewers.This work is supported by the National Key R&D Program of China(2018YFC1506803,2019YFB2102901)National Natural Science Foundation of China(Grant 41705135,41790474).
文摘The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global model(GM)forecasts to correct the large-scale drift,it has replaced the traditional full cycle(FC)strategy in many RRC systems.However,the extra spin-up in the PC strategy increases the computer burden on RRC and generates discontinuous smallscale systems among cycles.This study returns to the FC strategy but with initial fields generated by dynamic blending(DB)and data assimilation(DA).The DB ingests the time-varied large-scale information from the GM to the RM to generate less-biased background fields.Then the DA is performed.We applied the new FC strategy in a series of 7-day batch forecasts with the 3-hour cycle in July 2018,and February,April,and October 2019 over China using a Weather Research and Forecast(WRF)model-based RRC.A comparison shows that the new FC strategy results in less model bias than the PC strategy in most state variables and improves the forecast skills for moderate and light precipitation.The new FC strategy also allows the model to reach a balanced state earlier and gives favorable forecast continuity between adjacent cycles.Hence,this new FC strategy has potential to be applied in RRC forecast systems to replace the currently used PC strategy.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 41305099)
文摘A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.
基金This work was supported by the National Key R&D Program on the Monitoring,Early Warning and Prevention of Major Natural Disasters[grant number 2017YFC1502103]the Key Special Project for the Introducing Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)[grant number GML2019ZD0601]the National Natural Science Foundation of China[grant numbers 41875136,41305099,and 41801019].
文摘In order to compare the sensitivity of short-range ensemble forecasts to different land-surface parameters in the South China region,three perturbation experiments related to the land surface model(LSM),initial soil moisture(ISM),and land–atmosphere coupling coefficient(LCC)were designed,and another control experiment driven by the Global Ensemble Forecast System(GEFS)was also performed.All ensemble members were initiated at 0000 UTC each day,and integrated for 24 h for a total of 40 days from the period 1 April to 10 May 2019 based on the Weather Research and Forecasting model.The results showed that the perturbation experiment of the LSM(LSMPE)had the largest ensemble spread,as well as the lowest ensemble-mean root-mean-square error among the three sets of land-surface perturbed experiments,which indicated that it could represent more uncertainty and less error.The ensemble spread of the perturbation experiment of the ISM(ISMPE)was generally less than that of LSMPE but greater than that of LCCPE(the perturbation experiment of the LCC).In particular,although the perturbation of the LCC could not produce greater spread,it had an effective influence on the intensity of precipitation.However,the ensemble spread of all the land-surface perturbed experiments was smaller than that of GEFSPE(the control experiment).Therefore,in future,land-surface perturbations and atmospheric perturbations should be combined in the design of ensemble forecasting systems to make the model represent more uncertainties.
文摘Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.
基金National Natural Science Foundation of China(41075040,41475102)"973"project for typhoon(2015CB452802)+1 种基金CMA Special Welfare Research Fund(GYHY201406009)Public Welfare(Meteorological Sector)Research Fund(GYHY201406003)
文摘A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.
文摘The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.
文摘In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represented variables, temperature, geopotential height and orography, are replaced by their deviations from the reference atmosphere. Two modified semi- implicit schemes have been proposed to alleviate the computational instability due to the introduction of reference atmosphere. Concerning the deviation of surface geopotential height from reference atmosphere, an exact computational formulation has been used instead of the approximate one in the earlier work. To re duce aliasing errors in the computations of the deviation of the surface geopotential height, a spectral fit has been used slightly to modify the original Gaussian grid-point values of orography.A series of experiments has been performed in order to assess the impact of the reference atmosphere on ECMWF medium- range forecasts at the resolution T21, T42 and T63. The results we have obtained reveal that the reference atmosphere introduced in ECMWF spectral model is generally beneficial to the mean statistical scores of 1000-200 hPa height 10-day forecasts over the globe. In the Southern Hemisphere, it is a clear improvement for T21, T42 and T63 throughout the 10-day forecast period. In the Northern Hemisphere, the impact of the reference atmos phere on anomaly correlation is positive for resolution T21, a very slightly damaging at T42 and almost neutral at T63 in the range of day 1 to day 4. Beyond the day 4 there is a clear improvement at all resolutions.
文摘Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.
文摘The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2018YFF0300104 and 2017YFC0209804)the National Natural Science Foundation of China (Grant No. 11421101)Beijing Academy of Artifical Intelligence (BAAI)
文摘In this paper, the model output machine learning (MOML) method is proposed for simulating weather consultation, which can improve the forecast results of numerical weather prediction (NWP). During weather consultation, the forecasters obtain the final results by combining the observations with the NWP results and giving opinions based on their experience. It is obvious that using a suitable post-processing algorithm for simulating weather consultation is an interesting and important topic. MOML is a post-processing method based on machine learning, which matches NWP forecasts against observations through a regression function. By adopting different feature engineering of datasets and training periods, the observational and model data can be processed into the corresponding training set and test set. The MOML regression function uses an existing machine learning algorithm with the processed dataset to revise the output of NWP models combined with the observations, so as to improve the results of weather forecasts. To test the new approach for grid temperature forecasts, the 2-m surface air temperature in the Beijing area from the ECMWF model is used. MOML with different feature engineering is compared against the ECMWF model and modified model output statistics (MOS) method. MOML shows a better numerical performance than the ECMWF model and MOS, especially for winter. The results of MOML with a linear algorithm, running training period, and dataset using spatial interpolation ideas, are better than others when the forecast time is within a few days. The results of MOML with the Random Forest algorithm, year-round training period, and dataset containing surrounding gridpoint information, are better when the forecast time is longer.
基金Ministry of Science and Technology of China(2017YFC1501406)National Key Research and Development Plan Program of China(2017YFA0604500)CMA Youth Founding Program(Q201706&NWPC-QNJJ-201702)
文摘The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.
文摘The regional forecast of landslide is one of the key points of hazard mitigation. It is also a hot and difficult point in research field. To solve this problem has become urgent task along with Chinese economy fast development. This paper analyzes the principle of regional landslide forecast and the factors for forecasting. The method of a combination of Information Value Model and Extension Model has been put forward to be as the forecast model. Using new result of Numerical Weather Foreeast Research and that combination model, we discuss the implementation feasibility of regional landslide forecast. Finally, with the help of Geographic Information System, an operation system for southwest of China landslide forecast has been developed. It can carry out regional landslide forecast daily and has been pilot run in NMC. Since this is the first time linking theoretical research with meteorological service, further works are needed to enhance it.
基金Special Scientific Research Fund of Meteorological Public Welfare Industries of China(GYHY(QX)2007-6-1)National Nature Science Foundation of China(41305081)
文摘Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.
基金supported by the National Natural Science Foundation of China(Grants No.42105142 and 51979004)the Fundamental Research Funds for the Central Universities(Grant No.B210202014)the China PostDoctoral Science Foundation(Grant No.2021M701045).
文摘The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.
文摘[Objective] The research aimed to study the first spring soaking rain weather and its precipitation enhancement potential forecast in Jinzhou area in 2010. [Method] From the weather situation characteristics, main influence system, forecast service, artificial precipitation enhancement operation and so on, the first spring soaking rain weather process in Jinzhou area in 2010 was summarized comprehensively. [Result] The weather situation characteristics of soaking rain were that the high-altitude cold air was weak, and the low-level warm wet airflow was obvious. The main influence systems were the high-altitude trough, the high-altitude shear line and the ground Mongolian cyclone. The ground inverted trough system advanced northward and got through with the same phase of Mongolian cyclone, which provided the certain energy and water vapor for the precipitation in Jinzhou area. It was one of key reasons for generating the soaking rain. The numerical forecast product played the certain guidance role in the forecast service work. The situation field forecast was accurate, but the precipitation forecast deviation was big. Therefore, the forecast service couldn’t depend on the numerical forecast product simply and totally, and should combine with the actual monitoring data to analyze and apply comprehensively. [Conclusion] The research played the safeguarding role in carrying out the large-scale artificial precipitation enhancement operation successfully in the whole area of Jinzhou.
文摘Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively
基金supported by the project of National Key R&D Program of China(Grant no.2016YFC1402705)
文摘By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been undertaken to promote the development of techniques for the observation of surface and upper-air meteorological elements, and satellite image and data reception systems at Chinese Antarctic stations and onboard Chinese icebreakers have played critical roles in this endeavor. The upgrade of in situ and remote sensing measurement methods and the improvement of weather forecasting skill have enabled forecasters to achieve reliable on-site weather forecasting for the CHINARE. Nowadays, the routing of icebreakers, navigation of aircraft, and activities at Chinese Antarctic stations all benefit from the accurate weather forecasting service. In this paper, a review of the conventional meteorological measurement and operational weather forecasting services of the CHINARE is presented.
基金jointly supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KZCX2EW203)the National Key Basic Research Program of China(Grant No.2013CB430105)the National Department of Public Benefit Research Foundation(Grant No.GYHY201006031)
文摘A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.