Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc...To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The propos...This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.展开更多
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional...By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.展开更多
Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such ...Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalizat...Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.展开更多
Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing...Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.展开更多
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
基金This research was funded by Deanship of Scientific Research,Taif University Researches Supporting Project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.13KJB140003)the Postdoctoral Science Foundation of China(Grant No.2013M541608)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1202012B)
文摘By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
基金supported by JKW Program(No.M102-03)National Program(No.E0F80246).
文摘Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金National Natural Science Foundation of China under Grant No.10775097
文摘Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.
文摘Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.