期刊文献+
共找到694篇文章
< 1 2 35 >
每页显示 20 50 100
A Novel Ultra Short-Term Load Forecasting Method for Regional Electric Vehicle Charging Load Using Charging Pile Usage Degree
1
作者 Jinrui Tang Ganheng Ge +1 位作者 Jianchao Liu Honghui Yang 《Energy Engineering》 EI 2023年第5期1107-1132,共26页
Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduli... Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduling plan of regional charging load,which can be derived to realize the optimal vehicle to grid benefit.In this paper,a regional-level EV ultra STLF method is proposed and discussed.The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles,and then constructed by our collected EV charging transactiondata in thefield.Secondly,these usagedegrees are combinedwithhistorical charging loadvalues toform the inputmatrix for the deep learning based load predictionmodel.Finally,long short-termmemory(LSTM)neural network is used to construct EV charging load forecastingmodel,which is trained by the formed inputmatrix.The comparison experiment proves that the proposed method in this paper has higher prediction accuracy compared with traditionalmethods.In addition,load characteristic index for the fluctuation of adjacent day load and adjacent week load are proposed by us,and these fluctuation factors are used to assess the prediction accuracy of the EV charging load,together with the mean absolute percentage error(MAPE). 展开更多
关键词 electric vehicle charging load density-based spatial clustering of application with noise long-short termmemory load forecasting
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
2
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
3
作者 Manish Kumar Nitai Pal 《Computers, Materials & Continua》 SCIE EI 2023年第3期4785-4799,共15页
Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consump... Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management. 展开更多
关键词 Artificial intelligence electric load forecasting machine learning peak-load control renewable energy smart grids
下载PDF
Long-Term Electrical Load Forecasting in Rwanda Based on Support Vector Machine Enhanced with Q-SVM Optimization Kernel Function
4
作者 Eustache Uwimana Yatong Zhou Minghui Zhang 《Journal of Power and Energy Engineering》 2023年第8期32-54,共23页
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ... In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy. 展开更多
关键词 SVM Quadratic SVM Long-Term electrical load forecasting Residual load Demand Series Historical electric load
下载PDF
A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting 被引量:1
5
作者 Saqib Ali Shazia Riaz +2 位作者 Safoora Xiangyong Liu Guojun Wang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1783-1800,共18页
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio... Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work. 展开更多
关键词 short-term load forecasting artificial neural network power generation smart grid Levenberg-Marquardt technique
下载PDF
Hybrid partial least squares and neural network approach for short-term electrical load forecasting
6
作者 Shukang YANG Ming LU Huifeng XUE 《控制理论与应用(英文版)》 EI 2008年第1期93-96,共4页
Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundan... Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundant, and linearly or nonlinearly correlated with each other. Highly correlated input data can result in erroneous prediction results given out by an NN model. Besides this, the determination of the topological structure of an NN model has always been a problem for designers. This paper presents a new artificial intelligence hybrid procedure for next day electric load forecasting based on partial least squares (PLS) and NN. PLS is used for the compression of data input space, and helps to determine the structure of the NN model. The hybrid PLS-NN model can be used to predict hourly electric load on weekdays and weekends. The advantage of this methodology is that the hybrid model can provide faster convergence and more precise prediction results in comparison with abductive networks algorithm. Extensive testing on the electrical load data of the Puget power utility in the USA confirms the validity of the proposed approach. 展开更多
关键词 electric loads forecasting Hybrid neural networks model
下载PDF
Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm
7
作者 Jipeng Gu Weijie Zhang +5 位作者 Youbing Zhang Binjie Wang Wei Lou Mingkang Ye Linhai Wang Tao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2221-2236,共16页
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met... An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations. 展开更多
关键词 short-term load forecasting fuzzy time series K-means clustering distribution stations
下载PDF
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA
8
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
下载PDF
A comprehensive review for wind,solar,and electrical load forecasting methods 被引量:10
9
作者 Han Wang Ning Zhang +3 位作者 Ershun Du Jie Yan Shuang Han Yongqian Liu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期9-30,共22页
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp... Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last. 展开更多
关键词 Wind power Solar power electrical load forecasting Numerical Weather Prediction CORRELATION
下载PDF
Deep learning for time series forecasting:The electric load case 被引量:1
10
作者 Alberto Gasparin Slobodan Lukovic Cesare Alippi 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期1-25,共25页
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le... Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one. 展开更多
关键词 deep learning electric load forecasting multi-step ahead forecasting smart grid time-series prediction
下载PDF
Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression 被引量:2
11
作者 Nazih Abu-Shikhah Fawwaz Elkarmi Osama M. Aloquili 《Smart Grid and Renewable Energy》 2011年第2期126-135,共10页
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ... Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required. 展开更多
关键词 Medium-Term load forecasting electrical PEAK load MULTIVARIABLE Regression And TIME SERIES
下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
12
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 electricITY PRICE forecasting short-term load forecasting electricITY MARKETS Artificial NEURAL Networks Fuzzy LOGIC
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
13
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
关键词 MLP神经网络 电力负荷预测 SOM 自组织映射神经网络 短期负荷预测 神经网络训练 离散控制 多层感知器
下载PDF
Load-forecasting method for IES based on LSTM and dynamic similar days with multi-features
14
作者 Fan Sun Yaojia Huo +3 位作者 Lei Fu Huilan Liu Xi Wang Yiming Ma 《Global Energy Interconnection》 EI CSCD 2023年第3期285-296,共12页
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an... To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified. 展开更多
关键词 Integrated energy system load forecast Long short-term memory Dynamic similar days Gaussian mixture model
下载PDF
Electric Vehicle Charging Capacity of Distribution Network Considering Conventional Load Composition
15
作者 Pengwei Yang Yuqi Cao +4 位作者 Jie Tan Junfa Chen Chao Zhang Yan Wang Haifeng Liang 《Energy Engineering》 EI 2023年第3期743-762,共20页
At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accomm... At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network. 展开更多
关键词 Capacity charging load distribution charging load forecasting conventional load composition electric vehicle trip behavior
下载PDF
Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast
16
作者 Ahmed Al-Abri Kenneth E.Okedu 《Energy Engineering》 EI 2023年第2期409-423,共15页
Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to p... Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid. 展开更多
关键词 Energy forecast energy demand load demand power grids electricity sector
下载PDF
Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
17
作者 Aishah Alrashidi Ali Mustafa Qamar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1973-1988,共16页
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i... Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load. 展开更多
关键词 electricity load forecasting meteorological data machine learning feature selection modeling real-world problems predictive analytics
下载PDF
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting 被引量:12
18
作者 Xia Hua Gang Zhang +1 位作者 Jiawei Yang Zhengyuan Li 《ZTE Communications》 2015年第3期2-5,共4页
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ... Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality. 展开更多
关键词 BP-ANN short-term load forecasting of power grid multiscale entropy correlation analysis
下载PDF
Short-term load forecasting based on fuzzy neural network
19
作者 DONG Liang MU Zhichun (Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期46-48,53,共4页
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e... The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory. 展开更多
关键词 short-term load forecasting fuzzy control fuzzy neural networks
下载PDF
Comparison of ARIMA and ANN Models Used in Electricity Price Forecasting for Power Market
20
作者 Gao Gao Kwoklun Lo Fulin Fan 《Energy and Power Engineering》 2017年第4期120-126,共7页
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr... In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model. 展开更多
关键词 electricITY MARKETS electricITY PRICES ARIMA MODELS ANN MODELS short-term forecasting
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部