Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 wer...Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 were analyzed. The results showed that the dry line was the main trigger mechanism of this severe convective weather. Instable convection stratification of cold advection at middle layer and warm advection at low layer and abundant water vapor from low-level jet provided favorable stratification and water vapor conditions for the occurrence and development of severe convection. Cold trough at middle layer,low pressure and strong vertical wind shear at middle and lower layers may be main factors for the development and maintenance of strong storm system. Squall line developed along ground convergence line,and there was bow echo on reflectivity factor chart. Moving velocity of convective system was quick,and there was gale core and velocity ambiguity on velocity map.展开更多
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevent...Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.展开更多
基金Supported by Special Project for Forecasters of China Meteorological Administration(CMAYBY2020-096)Meteorological Scientific Research Plan Project of Guangxi Meteorological Bureau(GUIQIKE2017Z06)。
文摘Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 were analyzed. The results showed that the dry line was the main trigger mechanism of this severe convective weather. Instable convection stratification of cold advection at middle layer and warm advection at low layer and abundant water vapor from low-level jet provided favorable stratification and water vapor conditions for the occurrence and development of severe convection. Cold trough at middle layer,low pressure and strong vertical wind shear at middle and lower layers may be main factors for the development and maintenance of strong storm system. Squall line developed along ground convergence line,and there was bow echo on reflectivity factor chart. Moving velocity of convective system was quick,and there was gale core and velocity ambiguity on velocity map.
基金funded by Medical Science and Technology Projects,China(JK2023GK002,JK2023GK003,and JK2023GK004).
文摘Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.