Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of para...Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.展开更多
The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 statio...The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.展开更多
基金funded by the National Natural Science Foundation of China (No. 51378057)
文摘Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.
基金Key project of CAS, No.KZCX1-10-07 Key project of Cold and Arid Regions Environmental and Engineering Research Institute, CAS, No.CX210097 NSFC No.49805006.
文摘The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.