Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discr...Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.展开更多
Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data...Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has certain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.展开更多
For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulo...For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulomb failure criterion were adopted to derive a stability model for the infinite terraced slope subjected to an intense rainfall. Numerical simulation was performed for verifying its applicability. The results of numerical simulation indicate that a set of stepped wetting fronts are found during infiltration, and the infiltration of terraced slope covered by coarse-textured soils can be approximated as one-dimensional infiltration. The potential sliding surfaces from the numerical method are all parallel to the slope line, and the proposed model and framework can provide an approximate method of estimating how the infiltration affects the stability of an infinite terraced slope.展开更多
Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration reg...Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.展开更多
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and d...A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.展开更多
here are limitations in using the seasonal rainfall total in studies of Monsoon rainfall climatology. A correlation analysis of the individual station seasonal rainfall with all India seasonal mean rainfall has been m...here are limitations in using the seasonal rainfall total in studies of Monsoon rainfall climatology. A correlation analysis of the individual station seasonal rainfall with all India seasonal mean rainfall has been made. After taking the significance test (strictly up to 5% level) the stations which are significantly correlated have been considered in this study in normal, flood and drought years respectively. Analysis of seasonal rainfall data of 50 stations spread over a period of 41 years suggests that a linear relationship fits better than the logarithmic relationship when seasonal rainfall versus number of rainy days is studied. The linear relationship is also found to be better in the case of seasonal rainfall versus mean daily intensity.展开更多
Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especia...Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.展开更多
In recent years,with the increase of traffic construction in mountainous areas in China,road slope traffic accidents have become more and more common.In addition,natural disasters such as landslides,collapses and subg...In recent years,with the increase of traffic construction in mountainous areas in China,road slope traffic accidents have become more and more common.In addition,natural disasters such as landslides,collapses and subgrade settlements caused by rainfall,driving load,seasonal variation and groundwater distribution are frequent.In particular,rainfall is one of the most common factors leading to slope instability(landslide).Therefore,this paper proposes the seep module based on the application software Geo-studio,and analyzes the slope soil parameters and slope stability under five types of rainfall conditions:light rain(10 mm/d),moderate rain(25 mm/d),heavy rain(50 mm/d),rainstorm(100 mm/d),and torrential rain(250 mm/d).The critical safety factor under rainfall intensity is fitted with nonlinear curve by sine function.The results show that the fitting curve of rainfall intensity and safety factor on the upper slope is excellent.The residual points are evenly distributed in the belt area of±0.1,and the data basically conform to the nonlinear sine model,indicating that the curve plays an essential role in slope health diagnosis.展开更多
Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dime...Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dimensional cloud resolving model sensitivity experiments of pre-summer torrential rainfall in June 2008. The analysis of time-mean data shows that the exclusion of radiative effects of liquid clouds reduces domain mean rain rate by decreasing convective rain rate mainly through the reduced convective-rainfall area associated with the strengthened hydrometeor gain in the presence of radiative effects of ice clouds, whereas it increases domain mean rain rate by enhancing convective rain rate mainly via the intensified convective rain intensity associated with the enhanced net condensation in the absence of radiative effects of ice clouds. The removal of radiative effects of ice clouds decreases domain mean rain rate by reducing stratiform rain rate through the suppressed stratiform rain intensity related to the suppressed net condensation in the presence of radiative effects of liquid clouds, whereas it increases domain mean rain rate by strengthening convective rain rate mainly via the enhanced convective rain intensity in response to the enhanced net condensation in the absence of radiative effects of liquid clouds. The elimination of microphysical effects of ice clouds suppresses domain mean rain rate by reducing stratiform rain rate through the reduced stratiform-rainfall area associated with severely reduced hydrometeor loss.展开更多
Global atmospheric and oceanic perturbations and local weather variability induced factors highly alter the rainfall pattern of a region. Such factors result in extreme events of devastating nature to mankind. Rainfal...Global atmospheric and oceanic perturbations and local weather variability induced factors highly alter the rainfall pattern of a region. Such factors result in extreme events of devastating nature to mankind. Rainfall Intensity Duration Frequency (IDF) is one of the most commonly used tools in water resources engineering particularly to identify design storm event of various magnitude, duration and return period simultaneously. In light of this, the present study is aimed at developing rainfall IDF relationship for entire Rwanda based on selected twenty six (26) rainfall gauging stations. The gauging stations have been selected based on reliable rainfall records representing the different geographical locations varying from 14 to 83 years of record length. Daily annual maximum rainfall data has been disaggregated into sub-daily values such as 0.5 hr, 1 hr, 3 hr, 6 hr and 12 hr and fitted to the probability distributions. Quantile estimation has been made for different return periods and best fit distribution is identified based on least square standard error of estimate. At-site and regional IDF parameters were computed and subsequent curves were established for different return period. The moment ratio diagram (MRD) and L-moment ratio diagram (LMRD) methods have been used to fit frequency distributions and identify homogeneous regions for observed 24-hr maximum annual rainfall. The rainfall stations have been divided into five homogeneous rainfall regions for all 26 stations. The results of present analysis can be used as useful information for future water resources development planning purposes.展开更多
The change in rainfall pattern and intensity is becoming a great concern for hydrologic engineers and planners. Many parts of the world are experiencing extreme rainfall events such as experienced on 26<sup>th&l...The change in rainfall pattern and intensity is becoming a great concern for hydrologic engineers and planners. Many parts of the world are experiencing extreme rainfall events such as experienced on 26<sup>th</sup> July 2005 in Mumbai, India. For the appropriate design and planning of urban drainage system in an area, Intensity Duration Frequency (IDF) curves for given rainfall conditions are required. The aim of the present study is to derive the IDF curves for the rainfall in the Mumbai city, Maharashtra, India. Observed rainfall data from 1901 pertaining to Colaba and from 1951 of the Santacruz rain gauge stations in Mumbai are used in the present study to derive the IDF curves. Initially, the proposed IDF curves are derived using an empirical equation (Kothyari and Garde), by using probability distribution for annual maximum rainfall and then IDF curves are derived by modifying the equation. IDF curves developed by the modified equation gives good results in the changing hydrologic conditions and are compatible even with the extreme rainfall of 26<sup>th</sup> July 2005 in Mumbai.展开更多
The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge fo...The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge for the improvement of sub-seasonal to seasonal (S2S) prediction in this region. In this paper, we applied wavelet analysis on the 2.5° × 2.5° daily Outgoing Longwave Radiation (OLR, used here as rainfall proxy) to study the variations in the intensity of the 30 - 60-day intraseasonal rainfall oscillations over Central Africa within the last three decades (1980-2009). Results showed that the mean ISO intensity (ISOI) strongly fluctuates from day to another. The plots of monthly mean ISOIs revealed that the ISO activity is highly seasonal with above-normal ISO intensity during December-May and below-normal activity during June-November. The analysis of yearly mean ISOI showed that the ISOI exhibits strong interannual variations with the years of very low ISOIs such as 1982, 1994, 2001, 2007, 2009, 2015 and the years of very high ISOIs such as 1981, 1985, 1986, 989/1990, 1997, 2003, 2005. The regression analysis between ISOI and El Niño Southern Oscillation (ENSO) indices showed that even though the relationship between ISO and ENSO is nonlinear, warm ENSO (El Niño) events tend to reduce the ISOIs while cold ENSO (La Niña) events tend to increase it.展开更多
Our study is being carried out in the Wouri Estuary more precisely in the Nylon area, Douala. This area is influenced by abundant rainfall which promotes the phenomenon of rain erosion. This erosion contributes to the...Our study is being carried out in the Wouri Estuary more precisely in the Nylon area, Douala. This area is influenced by abundant rainfall which promotes the phenomenon of rain erosion. This erosion contributes to the degradation of structures and soils. To better understand and predict this phenomenon of rainfall erosion, we set out to establish a mathematical model that takes into account precipitation and topography. To this end, the data collected in the field and in the laboratory made it possible. First, we graphically modeled the variation of the potential as a function of the intensity of rainfall and the slope of the ground. Next, we identified a mathematical model from cubic spline surface interpolation. Finally, we obtained the mathematical model which makes it possible to evaluate and predict the erosion potential. The results obtained allowed to have an erosion potential of 153.67 t/ha/year with field data and 153.94 t/ha/year with laboratory data. We compared the results obtained with those existing in the literature on the same study site. This comparison made it possible to validate the established mathematical model. This mathematical model is a decision support tool and can predict problems related to water, erosion and the environment.展开更多
[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfa...[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfall intensities in Meilin basin, Yixing City, and its reliability was verified. Afterwards, the model was used to simulate the movement of total nitrogen (TN) in the soil under various rainfall intensities. [Result] Hydrus-1D model had a good effect in the simulation of soil moisture and TN content in surface soil. During the rainfall, TN loss from surface soil (0 -20 cm) accounted for above 95% of total loss from the whole soil (0 -100 cm). In addition, TN loss increased with the enhancement of rainfall intensities. However, TN loss tended to be stable when rainfall intensity exceeded 0.030 0 cm/min. [Conclusion] The research could provide theoretical refer- ences for the control of agricultural nonpoint source pollution in future.展开更多
The HKO (Hong Kong Observatory) has been carrying out an inter-comparison of automatic raingauges since 2011 for identifying raingauges that can meet the ~ 5% accuracy requirement of the WMO (World Meteorological O...The HKO (Hong Kong Observatory) has been carrying out an inter-comparison of automatic raingauges since 2011 for identifying raingauges that can meet the ~ 5% accuracy requirement of the WMO (World Meteorological Organization) in measuring rainfall amount. The inter-comparison was conducted at HKO's meteorological stations at King's Park and Hong Kong International Airport in Hong Kong. Two 0.1-mm resolution Pluvio-OTT weighing gauges were introduced in 2013. This type of raingauges has outperformed others in the WMO's field inter-comparison held between October 2007 and April 2009. The performances of 14 raingauges, comprising five different measurement methods, viz. drop-counting, weighing, tipping bucket with software correction, tipping bucket with extra pulse correction and tipping bucket without correction, were evaluated. The focus was to study their performances in rainfall intensity measurement, especially during heavy rain situations. Different high rainfall intensity episodes were selected for analysis. Among these episodes, the maximum 1-minute rainfall intensity as high as around 130 mm/hr was recorded by the Pluvio-OTT raingauges. This paper serves to conclude the 3-year (2011-2013) inter-comparison exercise for rainfall amount measurements and to provide preliminary 1-year (2013) comparison results on rainfall intensity measurements.展开更多
Mass movement in Sri Lanka is mainly triggered by heavy rainfall. International literature is rich of works defining rainfall intensity-duration models to identify the rainfall threshold for various types of Mass move...Mass movement in Sri Lanka is mainly triggered by heavy rainfall. International literature is rich of works defining rainfall intensity-duration models to identify the rainfall threshold for various types of Mass movement. However, studies have not focused to establish a relationship between intensity and duration of rainfall in Sri Lanka. Therefore, this study focused to establish rainfall intensity-duration models to identify the rainfall threshold for mass movements in Badulla district in Sri Lanka, where forty four (44) rainfall events that resulted in same number of landslides during the last three decades were considered. Results indicate the rainfall threshold relationship fits to the log linear model of the exponential function, I = α·D-β. The constructed I-D curve revealed that short duration (54 mm/h) in rainfall events can potentially trigger the landslide. However, long-duration (>8 h) and low-intensity (<25 mm/h) in rainfall events may also trigger mass movements in Badulla. As per the results, most mass movements occur during northeast monsoons and inter-monsoons. In general, higher mean rainfall intensities trigger the debris flows, while long-duration rainfall events can trigger both landslides and debris flow. When compared to Sri Lankan mass movements triggering threshold intensities are fairly higher than the global threshold values. It confirms that within Badulla, mass movements are triggered by very high intense and/or long duration rainfalls events only. Further, time series analysis of the rainfall events shows an upward trend of extreme rainfall events, which increased landslide occurring frequency in last six (6) years.展开更多
Various rainfall factors,which affect the activities of rainfall-induced debris flow,are discussed in this paper.The factors include antecedent precipitation,current precipitation,rainfall duration,intensity,peak,and ...Various rainfall factors,which affect the activities of rainfall-induced debris flow,are discussed in this paper.The factors include antecedent precipitation,current precipitation,rainfall duration,intensity,peak,and rainfall pattern.Rainfall-induced debris flow is trigged by the co-action of current rainfall and antecedent rainfall.The advanced system of precipitation monitoring and forecasting in the rainfall-induced debris flow forecast system is established,which consists of four methods-numerical weather prediction,stationary meteorological satellite,weather radar echo and automatic weather station.Since the forecast of rainfall-induced debris flow is based on the prediction of precipitation,the prediction models objectively require more detailed and precise prediction products,which put forward a new research subject for meteorologists.展开更多
Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that ...Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.展开更多
Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of...Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.展开更多
We studied the impact of forest vegetation on soil erosion, surface runoff, and sediment generation by using field simulated rainfall apparatus. We measured runoff and sediment generation of five 4.5 × 2.1 m runo...We studied the impact of forest vegetation on soil erosion, surface runoff, and sediment generation by using field simulated rainfall apparatus. We measured runoff and sediment generation of five 4.5 × 2.1 m runoff plots (a bare soil as a control; two Pinus tabulaeformis forest plots and two Platycladus orientalis forest with row spacing of 1 m × 1 m and 1.5 m× 1.5 m, respectively) in Beijing Jiu Feng National Forest Park under three rainfall intensities (0.42, 0.83, 1.26 mm per minute). Forest vegetation significantly reduced soil erosion and sediment yield. Mean total runoff volume in the four tree stand plots was 93% of that in the control plot, demonstrating the limited effectiveness of forest vegeta- tion in runoff control. With increasing rainfall intensity, runoff reduction in forest plots declined from 28.32% to 2.1%. Similar trends in runoff coefficient and the relationship between runoffvolume and rainfall duration was observed. Mean total sediment yield and mean sediment yield reduction rate under different treatments was 55.05% and 43.17% of those in the bare soil control plot, respectively. Rainfall intensity played an important role in runoff and sediment generation processes, and had a greater impact on runoff than on soil erosion and sediment generation. When considering several factors in runoff and sediment transport processes, the P. tabulaeform plot with row spacing at 1 × 1 m had a greater effect on soil and water conservation than did other forested plots.展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3007205)the National Natural Science Foundation of China(Nos.42271013,42077440)Project of the Department of Science and Technology of Sichuan Province(No.2023ZHCG0012).
文摘Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.
文摘Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has certain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.
基金Project(51178423)supported by the National Natural Science Foundation of China
文摘For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulomb failure criterion were adopted to derive a stability model for the infinite terraced slope subjected to an intense rainfall. Numerical simulation was performed for verifying its applicability. The results of numerical simulation indicate that a set of stepped wetting fronts are found during infiltration, and the infiltration of terraced slope covered by coarse-textured soils can be approximated as one-dimensional infiltration. The potential sliding surfaces from the numerical method are all parallel to the slope line, and the proposed model and framework can provide an approximate method of estimating how the infiltration affects the stability of an infinite terraced slope.
基金Project(2010(A)06-b)supported by the Scientific Research Fund of Yunnan Provincial Transport Department of ChinaProject(51108293)supported by the National Natural Science Foundation of China+1 种基金Project(2013PY37)supported by the Cultivated Foundation of Taizhou University of ChinaProject(LY13E080008)supported by the Zhejiang Provincial Natural Science Foundation of China
文摘Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.
基金supported by the Special Program in the Public Interest of the China Meteorological Administration (Grant No. GYHY201006022)the Strategic Special Projects of the Chinese Academy of Sciences (Grant No. XDA05090000)
文摘A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.
文摘here are limitations in using the seasonal rainfall total in studies of Monsoon rainfall climatology. A correlation analysis of the individual station seasonal rainfall with all India seasonal mean rainfall has been made. After taking the significance test (strictly up to 5% level) the stations which are significantly correlated have been considered in this study in normal, flood and drought years respectively. Analysis of seasonal rainfall data of 50 stations spread over a period of 41 years suggests that a linear relationship fits better than the logarithmic relationship when seasonal rainfall versus number of rainy days is studied. The linear relationship is also found to be better in the case of seasonal rainfall versus mean daily intensity.
文摘Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.
基金Received on August 27th,2020revised on September 22th,2020.This research was jointly supported by grants from the National Natural Science Foundation of China(41501062)the Applied Basic Research Foundation of Qinghai Province(2018-ZJ-784).
文摘In recent years,with the increase of traffic construction in mountainous areas in China,road slope traffic accidents have become more and more common.In addition,natural disasters such as landslides,collapses and subgrade settlements caused by rainfall,driving load,seasonal variation and groundwater distribution are frequent.In particular,rainfall is one of the most common factors leading to slope instability(landslide).Therefore,this paper proposes the seep module based on the application software Geo-studio,and analyzes the slope soil parameters and slope stability under five types of rainfall conditions:light rain(10 mm/d),moderate rain(25 mm/d),heavy rain(50 mm/d),rainstorm(100 mm/d),and torrential rain(250 mm/d).The critical safety factor under rainfall intensity is fitted with nonlinear curve by sine function.The results show that the fitting curve of rainfall intensity and safety factor on the upper slope is excellent.The residual points are evenly distributed in the belt area of±0.1,and the data basically conform to the nonlinear sine model,indicating that the curve plays an essential role in slope health diagnosis.
基金National Natural Science Foundation of China(41475039,41775040)National Key Basic Research and Development Project of China(2015CB953601)
文摘Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dimensional cloud resolving model sensitivity experiments of pre-summer torrential rainfall in June 2008. The analysis of time-mean data shows that the exclusion of radiative effects of liquid clouds reduces domain mean rain rate by decreasing convective rain rate mainly through the reduced convective-rainfall area associated with the strengthened hydrometeor gain in the presence of radiative effects of ice clouds, whereas it increases domain mean rain rate by enhancing convective rain rate mainly via the intensified convective rain intensity associated with the enhanced net condensation in the absence of radiative effects of ice clouds. The removal of radiative effects of ice clouds decreases domain mean rain rate by reducing stratiform rain rate through the suppressed stratiform rain intensity related to the suppressed net condensation in the presence of radiative effects of liquid clouds, whereas it increases domain mean rain rate by strengthening convective rain rate mainly via the enhanced convective rain intensity in response to the enhanced net condensation in the absence of radiative effects of liquid clouds. The elimination of microphysical effects of ice clouds suppresses domain mean rain rate by reducing stratiform rain rate through the reduced stratiform-rainfall area associated with severely reduced hydrometeor loss.
文摘Global atmospheric and oceanic perturbations and local weather variability induced factors highly alter the rainfall pattern of a region. Such factors result in extreme events of devastating nature to mankind. Rainfall Intensity Duration Frequency (IDF) is one of the most commonly used tools in water resources engineering particularly to identify design storm event of various magnitude, duration and return period simultaneously. In light of this, the present study is aimed at developing rainfall IDF relationship for entire Rwanda based on selected twenty six (26) rainfall gauging stations. The gauging stations have been selected based on reliable rainfall records representing the different geographical locations varying from 14 to 83 years of record length. Daily annual maximum rainfall data has been disaggregated into sub-daily values such as 0.5 hr, 1 hr, 3 hr, 6 hr and 12 hr and fitted to the probability distributions. Quantile estimation has been made for different return periods and best fit distribution is identified based on least square standard error of estimate. At-site and regional IDF parameters were computed and subsequent curves were established for different return period. The moment ratio diagram (MRD) and L-moment ratio diagram (LMRD) methods have been used to fit frequency distributions and identify homogeneous regions for observed 24-hr maximum annual rainfall. The rainfall stations have been divided into five homogeneous rainfall regions for all 26 stations. The results of present analysis can be used as useful information for future water resources development planning purposes.
文摘The change in rainfall pattern and intensity is becoming a great concern for hydrologic engineers and planners. Many parts of the world are experiencing extreme rainfall events such as experienced on 26<sup>th</sup> July 2005 in Mumbai, India. For the appropriate design and planning of urban drainage system in an area, Intensity Duration Frequency (IDF) curves for given rainfall conditions are required. The aim of the present study is to derive the IDF curves for the rainfall in the Mumbai city, Maharashtra, India. Observed rainfall data from 1901 pertaining to Colaba and from 1951 of the Santacruz rain gauge stations in Mumbai are used in the present study to derive the IDF curves. Initially, the proposed IDF curves are derived using an empirical equation (Kothyari and Garde), by using probability distribution for annual maximum rainfall and then IDF curves are derived by modifying the equation. IDF curves developed by the modified equation gives good results in the changing hydrologic conditions and are compatible even with the extreme rainfall of 26<sup>th</sup> July 2005 in Mumbai.
文摘The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge for the improvement of sub-seasonal to seasonal (S2S) prediction in this region. In this paper, we applied wavelet analysis on the 2.5° × 2.5° daily Outgoing Longwave Radiation (OLR, used here as rainfall proxy) to study the variations in the intensity of the 30 - 60-day intraseasonal rainfall oscillations over Central Africa within the last three decades (1980-2009). Results showed that the mean ISO intensity (ISOI) strongly fluctuates from day to another. The plots of monthly mean ISOIs revealed that the ISO activity is highly seasonal with above-normal ISO intensity during December-May and below-normal activity during June-November. The analysis of yearly mean ISOI showed that the ISOI exhibits strong interannual variations with the years of very low ISOIs such as 1982, 1994, 2001, 2007, 2009, 2015 and the years of very high ISOIs such as 1981, 1985, 1986, 989/1990, 1997, 2003, 2005. The regression analysis between ISOI and El Niño Southern Oscillation (ENSO) indices showed that even though the relationship between ISO and ENSO is nonlinear, warm ENSO (El Niño) events tend to reduce the ISOIs while cold ENSO (La Niña) events tend to increase it.
文摘Our study is being carried out in the Wouri Estuary more precisely in the Nylon area, Douala. This area is influenced by abundant rainfall which promotes the phenomenon of rain erosion. This erosion contributes to the degradation of structures and soils. To better understand and predict this phenomenon of rainfall erosion, we set out to establish a mathematical model that takes into account precipitation and topography. To this end, the data collected in the field and in the laboratory made it possible. First, we graphically modeled the variation of the potential as a function of the intensity of rainfall and the slope of the ground. Next, we identified a mathematical model from cubic spline surface interpolation. Finally, we obtained the mathematical model which makes it possible to evaluate and predict the erosion potential. The results obtained allowed to have an erosion potential of 153.67 t/ha/year with field data and 153.94 t/ha/year with laboratory data. We compared the results obtained with those existing in the literature on the same study site. This comparison made it possible to validate the established mathematical model. This mathematical model is a decision support tool and can predict problems related to water, erosion and the environment.
基金Supported by National Natural Science Foundation of China(1069-50905911)
文摘[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfall intensities in Meilin basin, Yixing City, and its reliability was verified. Afterwards, the model was used to simulate the movement of total nitrogen (TN) in the soil under various rainfall intensities. [Result] Hydrus-1D model had a good effect in the simulation of soil moisture and TN content in surface soil. During the rainfall, TN loss from surface soil (0 -20 cm) accounted for above 95% of total loss from the whole soil (0 -100 cm). In addition, TN loss increased with the enhancement of rainfall intensities. However, TN loss tended to be stable when rainfall intensity exceeded 0.030 0 cm/min. [Conclusion] The research could provide theoretical refer- ences for the control of agricultural nonpoint source pollution in future.
文摘The HKO (Hong Kong Observatory) has been carrying out an inter-comparison of automatic raingauges since 2011 for identifying raingauges that can meet the ~ 5% accuracy requirement of the WMO (World Meteorological Organization) in measuring rainfall amount. The inter-comparison was conducted at HKO's meteorological stations at King's Park and Hong Kong International Airport in Hong Kong. Two 0.1-mm resolution Pluvio-OTT weighing gauges were introduced in 2013. This type of raingauges has outperformed others in the WMO's field inter-comparison held between October 2007 and April 2009. The performances of 14 raingauges, comprising five different measurement methods, viz. drop-counting, weighing, tipping bucket with software correction, tipping bucket with extra pulse correction and tipping bucket without correction, were evaluated. The focus was to study their performances in rainfall intensity measurement, especially during heavy rain situations. Different high rainfall intensity episodes were selected for analysis. Among these episodes, the maximum 1-minute rainfall intensity as high as around 130 mm/hr was recorded by the Pluvio-OTT raingauges. This paper serves to conclude the 3-year (2011-2013) inter-comparison exercise for rainfall amount measurements and to provide preliminary 1-year (2013) comparison results on rainfall intensity measurements.
文摘Mass movement in Sri Lanka is mainly triggered by heavy rainfall. International literature is rich of works defining rainfall intensity-duration models to identify the rainfall threshold for various types of Mass movement. However, studies have not focused to establish a relationship between intensity and duration of rainfall in Sri Lanka. Therefore, this study focused to establish rainfall intensity-duration models to identify the rainfall threshold for mass movements in Badulla district in Sri Lanka, where forty four (44) rainfall events that resulted in same number of landslides during the last three decades were considered. Results indicate the rainfall threshold relationship fits to the log linear model of the exponential function, I = α·D-β. The constructed I-D curve revealed that short duration (54 mm/h) in rainfall events can potentially trigger the landslide. However, long-duration (>8 h) and low-intensity (<25 mm/h) in rainfall events may also trigger mass movements in Badulla. As per the results, most mass movements occur during northeast monsoons and inter-monsoons. In general, higher mean rainfall intensities trigger the debris flows, while long-duration rainfall events can trigger both landslides and debris flow. When compared to Sri Lankan mass movements triggering threshold intensities are fairly higher than the global threshold values. It confirms that within Badulla, mass movements are triggered by very high intense and/or long duration rainfalls events only. Further, time series analysis of the rainfall events shows an upward trend of extreme rainfall events, which increased landslide occurring frequency in last six (6) years.
文摘Various rainfall factors,which affect the activities of rainfall-induced debris flow,are discussed in this paper.The factors include antecedent precipitation,current precipitation,rainfall duration,intensity,peak,and rainfall pattern.Rainfall-induced debris flow is trigged by the co-action of current rainfall and antecedent rainfall.The advanced system of precipitation monitoring and forecasting in the rainfall-induced debris flow forecast system is established,which consists of four methods-numerical weather prediction,stationary meteorological satellite,weather radar echo and automatic weather station.Since the forecast of rainfall-induced debris flow is based on the prediction of precipitation,the prediction models objectively require more detailed and precise prediction products,which put forward a new research subject for meteorologists.
基金supported by the National Natural Science Foundation of China (Grant No. 41475039)the National Key Basic Research and Development Project of China (Grant No. 2015CB953601)
文摘Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.
基金supported by the National Key Research and Development Program of China (2016YFC0402404, 2016YFC0402407)the National Natural Science Foundation of China (L1624052, 41330858, 41471226, and 51509203)the Dr.Innovation Fund of Xi’an University of Technology (310-252071505)
文摘Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.
基金supported by the Funda-mental Research Funds for the Central Universities (No.TD2011-03)National Advanced Project of the 12th Five-year Plan (2011BAD38B05)National Forestry Public Welfare Industry Research Project(201104005)
文摘We studied the impact of forest vegetation on soil erosion, surface runoff, and sediment generation by using field simulated rainfall apparatus. We measured runoff and sediment generation of five 4.5 × 2.1 m runoff plots (a bare soil as a control; two Pinus tabulaeformis forest plots and two Platycladus orientalis forest with row spacing of 1 m × 1 m and 1.5 m× 1.5 m, respectively) in Beijing Jiu Feng National Forest Park under three rainfall intensities (0.42, 0.83, 1.26 mm per minute). Forest vegetation significantly reduced soil erosion and sediment yield. Mean total runoff volume in the four tree stand plots was 93% of that in the control plot, demonstrating the limited effectiveness of forest vegeta- tion in runoff control. With increasing rainfall intensity, runoff reduction in forest plots declined from 28.32% to 2.1%. Similar trends in runoff coefficient and the relationship between runoffvolume and rainfall duration was observed. Mean total sediment yield and mean sediment yield reduction rate under different treatments was 55.05% and 43.17% of those in the bare soil control plot, respectively. Rainfall intensity played an important role in runoff and sediment generation processes, and had a greater impact on runoff than on soil erosion and sediment generation. When considering several factors in runoff and sediment transport processes, the P. tabulaeform plot with row spacing at 1 × 1 m had a greater effect on soil and water conservation than did other forested plots.