We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct prediction...We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.展开更多
Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time ar...Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time are important for evacuation measures in low-lying regions and coastal management plans.In addition to experienced predictions and numerical models,artificial intelligence(AI)techniques are also being used widely for short-term storm surge prediction owing to their merits in good level of prediction accuracy and rapid computations.Convolutional neural network(CNN)and long short-term memory(LSTM)are two of the most important models among AI techniques.However,they have been scarcely utilised for surge level(SL)forecasting,and combinations of the two models are even rarer.This study applied CNN and LSTM both individually and in combination towards multi-step ahead short-term storm surge level prediction using observed SL and wind information.The architectures of the CNN,LSTM,and two sequential techniques of combining the models(LSTM–CNN and CNN–LSTM)were constructed via a trial-and-error approach and knowledge obtained from previous studies.As a case study,11 a of hourly observed SL and wind data of the Xiuying Station,Hainan Province,China,were organised as inputs for training to verify the feasibility and superiority of the proposed models.The results show that CNN and LSTM had evident advantages over support vector regression(SVR)and multilayer perceptron(MLP),and the combined models outperformed the individual models(CNN and LSTM),mostly by 4%–6%.However,on comparing the model computed predictions during two severe typhoons that resulted in extreme storm surges,the accuracy was found to improve by over 10%at all forecasting steps.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc...To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.展开更多
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m...With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention...BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.展开更多
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ...With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.展开更多
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r...BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.展开更多
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a...Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.展开更多
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has...BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has not been determined.The prognostic value of red blood cell distribution width(RDW)for CRC patients was controversial.AIM To investigate the impact of RDW and hematocrit on the short-term outcomes and long-term prognosis of CRC patients who underwent radical surgery.METHODS Patients who were diagnosed with CRC and underwent radical CRC resection between January 2011 and January 2020 at a single clinical center were included.The short-term outcomes,overall survival(OS)and disease-free survival(DFS)were compared among the different groups.Cox analysis was also conducted to identify independent risk factors for OS and DFS.RESULTS There were 4258 CRC patients who underwent radical surgery included in our study.A total of 1573 patients were in the lower RDW group and 2685 patients were in the higher RDW group.There were 2166 and 2092 patients in the higher hematocrit group and lower hematocrit group,respectively.Patients in the higher RDW group had more intraoperative blood loss(P<0.01)and more overall complications(P<0.01)than did those in the lower RDW group.Similarly,patients in the lower hematocrit group had more intraoperative blood loss(P=0.012),longer hospital stay(P=0.016)and overall complications(P<0.01)than did those in the higher hematocrit group.The higher RDW group had a worse OS and DFS than did the lower RDW group for tumor node metastasis(TNM)stage I(OS,P<0.05;DFS,P=0.001)and stage II(OS,P=0.004;DFS,P=0.01)than the lower RDW group;the lower hematocrit group had worse OS and DFS for TNM stage II(OS,P<0.05;DFS,P=0.001)and stage III(OS,P=0.001;DFS,P=0.001)than did the higher hematocrit group.Preoperative hematocrit was an independent risk factor for OS[P=0.017,hazard ratio(HR)=1.256,95%confidence interval(CI):1.041-1.515]and DFS(P=0.035,HR=1.194,95%CI:1.013-1.408).CONCLUSION A higher preoperative RDW and lower hematocrit were associated with more postoperative complications.However,only hematocrit was an independent risk factor for OS and DFS in CRC patients who underwent radical surgery,while RDW was not.展开更多
BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction...BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction and forecast outcomes in clinical settings.In 2021,the GI dysfunction score(GIDS)was developed,building on the AGI grading system,to enhance the accuracy of GI dysfunction severity assessment,improve prognostic predictions,reduce subjectivity,and increase reproducibility.AIM To compare the predictive capabilities of GIDS and the AGI grading system for 28-day mortality in critically ill patients.METHODS A retrospective study was conducted at the general intensive care unit(ICU)of a regional university hospital.All data were collected during the first week of ICU admission.The primary outcome was 28-day mortality.Multivariable logistic regression analyzed whether GIDS and AGI grade were independent risk factors for 28-day mortality.The predictive abilities of GIDS and AGI grade were compared using the receiver operating characteristic curve,with DeLong’s test assessing differences between the curves’areas.RESULTS The incidence of AGI in the first week of ICU admission was 92.13%.There were 85 deaths(47.75%)within 28 days of ICU admission.There was no initial 24-hour difference in GIDS between the non-survival and survival groups.Both GIDS(OR 2.01,95%CI:1.25-3.24;P=0.004)and AGI grade(OR 1.94,95%CI:1.12-3.38;P=0.019)were independent predictors of 28-day mortality.No significant difference was found between the predictive accuracy of GIDS and AGI grade for 28-day mortality during the first week of ICU admission(Z=-0.26,P=0.794).CONCLUSION GIDS within the first 24 hours was an unreliable predictor of 28-day mortality.The predictive accuracy for 28-day mortality from both systems during the first week was comparable.展开更多
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ...Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.展开更多
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ...Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.展开更多
BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related m...BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related medical conditions.Despite its effectiveness,postoperative care still has challenges.Clinical evidence shows that venous thromboembolism(VTE)is a leading cause of 30-d morbidity and mortality after RYGB.Therefore,a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.AIM To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.METHODS Using the 2016–2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program,data from 6526 patients(body mass index≥40 kg/m^(2))who underwent RYGB were analyzed.A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB.The resultant risk scores were derived from the coefficients of statistically significant variables.The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.RESULTS Of the 26 initial variables,six predictors were identified.These included a history of chronic obstructive pulmonary disease with a regression coefficient(Coef)of 2.54(P<0.001),length of stay(Coef 0.08,P<0.001),prior deep venous thrombosis(Coef 1.61,P<0.001),hemoglobin A1c>7%(Coef 1.19,P<0.001),venous stasis history(Coef 1.43,P<0.001),and preoperative anticoagulation use(Coef 1.24,P<0.001).These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB.The risk model's area under the curve(AUC)was 0.79[95%confidence interval(CI):0.63-0.81],showing good discriminatory power,achieving a sensitivity of 0.60 and a specificity of 0.91.Without training,the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63(95%CI:0.62-0.64)and endoscopic sleeve gastroplasty with an AUC of 0.76(95%CI:0.75-0.78).CONCLUSION This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients,offering insights into factors that heighten the risk of VTE events.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key...The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident.展开更多
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher...This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.
基金The National Key Research and Development Program of China under contract No.2016YFC1402609the Open Fund of the Key Laboratory of Marine Hazards Forecasting+1 种基金Ministry of Natural Resources under contract No.LOMF 1804the National Natural Science Foundation of China under contract No.42077438。
文摘Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time are important for evacuation measures in low-lying regions and coastal management plans.In addition to experienced predictions and numerical models,artificial intelligence(AI)techniques are also being used widely for short-term storm surge prediction owing to their merits in good level of prediction accuracy and rapid computations.Convolutional neural network(CNN)and long short-term memory(LSTM)are two of the most important models among AI techniques.However,they have been scarcely utilised for surge level(SL)forecasting,and combinations of the two models are even rarer.This study applied CNN and LSTM both individually and in combination towards multi-step ahead short-term storm surge level prediction using observed SL and wind information.The architectures of the CNN,LSTM,and two sequential techniques of combining the models(LSTM–CNN and CNN–LSTM)were constructed via a trial-and-error approach and knowledge obtained from previous studies.As a case study,11 a of hourly observed SL and wind data of the Xiuying Station,Hainan Province,China,were organised as inputs for training to verify the feasibility and superiority of the proposed models.The results show that CNN and LSTM had evident advantages over support vector regression(SVR)and multilayer perceptron(MLP),and the combined models outperformed the individual models(CNN and LSTM),mostly by 4%–6%.However,on comparing the model computed predictions during two severe typhoons that resulted in extreme storm surges,the accuracy was found to improve by over 10%at all forecasting steps.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
文摘To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.
基金funded by Liaoning Provincial Department of Science and Technology(2023JH2/101600058)。
文摘With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
文摘BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.
文摘With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.
文摘BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.
基金supported in part by the National Natural Science Foundation of China under Grant 62203468in part by the Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant Q2023X011+1 种基金in part by the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001in part by the Youth Talent Program Supported by China Railway Society,and in part by the Research Program of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ112.
文摘Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.
基金The study was approved by the ethics committee of the First Affiliated Hospital of Chongqing Medical University(2022-K205),this study was conducted in accordance with the World Medical Association Declaration of Helsinki as well。
文摘BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has not been determined.The prognostic value of red blood cell distribution width(RDW)for CRC patients was controversial.AIM To investigate the impact of RDW and hematocrit on the short-term outcomes and long-term prognosis of CRC patients who underwent radical surgery.METHODS Patients who were diagnosed with CRC and underwent radical CRC resection between January 2011 and January 2020 at a single clinical center were included.The short-term outcomes,overall survival(OS)and disease-free survival(DFS)were compared among the different groups.Cox analysis was also conducted to identify independent risk factors for OS and DFS.RESULTS There were 4258 CRC patients who underwent radical surgery included in our study.A total of 1573 patients were in the lower RDW group and 2685 patients were in the higher RDW group.There were 2166 and 2092 patients in the higher hematocrit group and lower hematocrit group,respectively.Patients in the higher RDW group had more intraoperative blood loss(P<0.01)and more overall complications(P<0.01)than did those in the lower RDW group.Similarly,patients in the lower hematocrit group had more intraoperative blood loss(P=0.012),longer hospital stay(P=0.016)and overall complications(P<0.01)than did those in the higher hematocrit group.The higher RDW group had a worse OS and DFS than did the lower RDW group for tumor node metastasis(TNM)stage I(OS,P<0.05;DFS,P=0.001)and stage II(OS,P=0.004;DFS,P=0.01)than the lower RDW group;the lower hematocrit group had worse OS and DFS for TNM stage II(OS,P<0.05;DFS,P=0.001)and stage III(OS,P=0.001;DFS,P=0.001)than did the higher hematocrit group.Preoperative hematocrit was an independent risk factor for OS[P=0.017,hazard ratio(HR)=1.256,95%confidence interval(CI):1.041-1.515]and DFS(P=0.035,HR=1.194,95%CI:1.013-1.408).CONCLUSION A higher preoperative RDW and lower hematocrit were associated with more postoperative complications.However,only hematocrit was an independent risk factor for OS and DFS in CRC patients who underwent radical surgery,while RDW was not.
基金approved by the Ethics Committee of the First Affiliated Hospital of Zhejiang Chinese Medical University(No.2024-KLS-369-02).
文摘BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction and forecast outcomes in clinical settings.In 2021,the GI dysfunction score(GIDS)was developed,building on the AGI grading system,to enhance the accuracy of GI dysfunction severity assessment,improve prognostic predictions,reduce subjectivity,and increase reproducibility.AIM To compare the predictive capabilities of GIDS and the AGI grading system for 28-day mortality in critically ill patients.METHODS A retrospective study was conducted at the general intensive care unit(ICU)of a regional university hospital.All data were collected during the first week of ICU admission.The primary outcome was 28-day mortality.Multivariable logistic regression analyzed whether GIDS and AGI grade were independent risk factors for 28-day mortality.The predictive abilities of GIDS and AGI grade were compared using the receiver operating characteristic curve,with DeLong’s test assessing differences between the curves’areas.RESULTS The incidence of AGI in the first week of ICU admission was 92.13%.There were 85 deaths(47.75%)within 28 days of ICU admission.There was no initial 24-hour difference in GIDS between the non-survival and survival groups.Both GIDS(OR 2.01,95%CI:1.25-3.24;P=0.004)and AGI grade(OR 1.94,95%CI:1.12-3.38;P=0.019)were independent predictors of 28-day mortality.No significant difference was found between the predictive accuracy of GIDS and AGI grade for 28-day mortality during the first week of ICU admission(Z=-0.26,P=0.794).CONCLUSION GIDS within the first 24 hours was an unreliable predictor of 28-day mortality.The predictive accuracy for 28-day mortality from both systems during the first week was comparable.
基金Supported by the National Natural Science Foundation,China(No.61402011)the Open Project Program of the Key Laboratory of Embedded System and Service Computing of Ministry of Education(No.ESSCKF2021-05).
文摘Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.
文摘BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related medical conditions.Despite its effectiveness,postoperative care still has challenges.Clinical evidence shows that venous thromboembolism(VTE)is a leading cause of 30-d morbidity and mortality after RYGB.Therefore,a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.AIM To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.METHODS Using the 2016–2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program,data from 6526 patients(body mass index≥40 kg/m^(2))who underwent RYGB were analyzed.A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB.The resultant risk scores were derived from the coefficients of statistically significant variables.The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.RESULTS Of the 26 initial variables,six predictors were identified.These included a history of chronic obstructive pulmonary disease with a regression coefficient(Coef)of 2.54(P<0.001),length of stay(Coef 0.08,P<0.001),prior deep venous thrombosis(Coef 1.61,P<0.001),hemoglobin A1c>7%(Coef 1.19,P<0.001),venous stasis history(Coef 1.43,P<0.001),and preoperative anticoagulation use(Coef 1.24,P<0.001).These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB.The risk model's area under the curve(AUC)was 0.79[95%confidence interval(CI):0.63-0.81],showing good discriminatory power,achieving a sensitivity of 0.60 and a specificity of 0.91.Without training,the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63(95%CI:0.62-0.64)and endoscopic sleeve gastroplasty with an AUC of 0.76(95%CI:0.75-0.78).CONCLUSION This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients,offering insights into factors that heighten the risk of VTE events.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金supported by the Science and Technology Project of State Grid Corporation of China(4000-202122070A-0-0-00).
文摘The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident.
基金funded by the project of the China Geological Survey(DD20211364)the Science and Technology Talent Program of Ministry of Natural Resources of China(grant number 121106000000180039–2201)。
文摘This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.