期刊文献+
共找到549篇文章
< 1 2 28 >
每页显示 20 50 100
Assessment of Seasonal Rainfall Prediction in Ethiopia: Evaluating a Dynamic Recurrent Neural Network to Downscale ECMWF-SEAS5 Rainfall
1
作者 Abebe KEBEDE Kirsten WARRACH-SAGI +3 位作者 Thomas SCHWITALLA Volker WULFMEYER Tesfaye ABEBE Markos WARE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2230-2244,共15页
Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting ... Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results. 展开更多
关键词 STATION prediction DOWNSCALING artificial neural networks rainfall
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
2
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
3
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
4
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Transformer-based correction scheme for short-term bus load prediction in holidays
5
作者 Tang Ningkai Lu Jixiang +3 位作者 Chen Tianyu Shu Jiao Chang Li Chen Tao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期304-312,共9页
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc... To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios. 展开更多
关键词 short-term bus load prediction Transformer network holiday load pre-training model load clustering
下载PDF
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
6
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Development and validation of a circulating tumor DNA-based optimization-prediction model for short-term postoperative recurrence of endometrial cancer
7
作者 Yuan Liu Xiao-Ning Lu +3 位作者 Hui-Ming Guo Chan Bao Juan Zhang Yu-Ni Jin 《World Journal of Clinical Cases》 SCIE 2024年第18期3385-3394,共10页
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r... BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC. 展开更多
关键词 Circulating tumor DNA Endometrial cancer short-term recurrence predictive model Prospective validation
下载PDF
Short-term train arrival delay prediction:a data-driven approach
8
作者 Qingyun Fu Shuxin Ding +3 位作者 Tao Zhang Rongsheng Wang Ping Hu Cunlai Pu 《Railway Sciences》 2024年第4期514-529,共16页
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a... Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance. 展开更多
关键词 Train delay prediction Intelligent dispatching command Deep learning Convolutional neural network Long short-term memory Attention mechanism
下载PDF
Data Mining with Comprehensive Oppositional Based Learning for Rainfall Prediction
9
作者 Mohammad Alamgeer Amal Al-Rasheed +3 位作者 Ahmad Alhindi Manar Ahmed Hamza Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第2期2725-2738,共14页
Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models ca... Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques. 展开更多
关键词 Data mining rainfall prediction deep learning correlation matrix hyperparameter tuning metaheuristics
下载PDF
An Approach for Improving Short-Term Prediction of Summer Rainfall over North China by Decomposing Interannual and Decadal Variability 被引量:2
10
作者 HAN Leqiong LI Shuanglin LIU Na 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期435-448,共14页
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and d... A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions. 展开更多
关键词 summer rainfall short-term prediction decomposing DOWNSCALING
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:6
11
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction Long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
An Integrated Analysis of Yield Prediction Models:A Comprehensive Review of Advancements and Challenges
12
作者 Nidhi Parashar Prashant Johri +2 位作者 Arfat Ahmad Khan Nitin Gaur Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2024年第7期389-425,共37页
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l... The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output. 展开更多
关键词 Machine learning crop yield prediction deep learning remote sensing long short-term memory time series prediction systematic literature review
下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
13
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
下载PDF
Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
14
作者 Zhigao Chen Yan Zong +2 位作者 Zihao Wu Zhiyu Kuang Shengping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期40-51,共12页
The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter... The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models. 展开更多
关键词 discharge prediction long short-term memory networks sequence-to-sequence(Seq2Seq)model tidal river back propagation neural network Changjiang River(Yangtze River)Estuary
下载PDF
Application of ATOVS Microwave Radiance Assimilation to Rainfall Prediction in Summer 2004 被引量:7
15
作者 齐琳琳 孙建华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第5期815-830,共16页
Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (... Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China. 展开更多
关键词 heavy rainfall satellite radiance data direct assimilation rainfall prediction experiments
下载PDF
Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall 被引量:5
16
作者 LI Fang LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期497-504,共8页
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu... Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble. 展开更多
关键词 probability density function seasonal prediction multi-model ensemble Yangtze River valley summer rainfall Bayesian scheme
下载PDF
A Statistical-Dynamical Scheme for the Extraseasonal Prediction of Summer Rainfall for 160 Observation Stations across China 被引量:4
17
作者 郎咸梅 郑飞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第6期1291-1300,共10页
The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined... The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined both valuable information from the preceding observations and dynamical information from synchronous numerical predictions of atmospheric circulation factors produced by an atmospheric general circulation model.First,the key preceding climatic signals and synchronous atmospheric circulation factors that were not only closely related to summer rainfall but also numerically predictable were identified as the potential predictors.Second,the extraseasonal prediction models of summer rainfall were constructed using a multivariate linear regression analysis for 15 subregions and then 160 stations across China.Cross-validation analyses performed for the period 1983-2008 revealed that the performance of the prediction models was not only high in terms of interannual variation,trend,and sign but also was stable during the whole period.Furthermore,the performance of the scheme was confirmed by the accuracy of the real-time prediction of summer rainfall during 2009 and 2010. 展开更多
关键词 summer rainfall statistical-dynamical scheme prediction model
下载PDF
A STATISTICAL PREDICTION MODEL FOR SPRING RAINFALL OVER NORTHERN CHINA BASED ON THE INTERANNUAL INCREMENT APPROACH 被引量:6
18
作者 范可 《Journal of Tropical Meteorology》 SCIE 2012年第4期543-550,共8页
The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast ... The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast model for the DY of SPRNC is constructed based on the data that are taken from the 1965-2002 period (38 years), in which six predictors are available no later than the current month of February. This is favorable so that the seasonal forecasts can be made one month ahead. Then, SPRNC and the percentage anomaly of SPRNC are obtained by the predicted DY of SPRNC. The model performs well in the prediction of the inter-annual variation of the DY of SPRNC during 1965-2002, with a correlation coefficient between the predicted and observed DY of SPRNC of 0.87. This accounts for 76% of the total variance, with a low value for the average root mean square error (RMSE) of 20%. Both the results of the hindcast for the period of 2003-2010 (eight years) and the cross-validation test for the period of 1965-2009 (45 years) illustrate the good prediction capability of the model, with a small mean relative error of 10%, an RMSE of 17% and a high rate of coherence of 87.5% for the hindcasts of the percentage anomaly of SPRNC. 展开更多
关键词 spring rainfall over northern China statistical prediction model interannual increment approach
下载PDF
Improvements in Long-Lead Prediction of Early-Summer Subtropical Frontal Rainfall Based on Arctic Sea Ice 被引量:1
19
作者 XING Wen HUANG Fei 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第3期542-552,共11页
Seasonal prediction of East Asia(EA) summer rainfall, especially with a longer-lead time, is in great demand, but still very challenging. The present study aims to make long-lead prediction of EA subtropical frontal r... Seasonal prediction of East Asia(EA) summer rainfall, especially with a longer-lead time, is in great demand, but still very challenging. The present study aims to make long-lead prediction of EA subtropical frontal rainfall(SFR) during early summer(May-June mean, MJ) by considering Arctic sea ice(ASI) variability as a new potential predictor. A MJ SFR index(SFRI), the leading principle component of the empirical orthogonal function(EOF) analysis applied to the MJ precipitation anomaly over EA, is defined as the predictand. Analysis of 38-year observations(1979-2016) revealed three physically consequential predictors. A stronger SFRI is preceded by dipolar ASI anomaly in the previous autumn, a sea level pressure(SLP) dipole in the Eurasian continent, and a sea surface temperature anomaly tripole pattern in the tropical Pacific in the previous winter. These precursors foreshadow an enhanced Okhotsk High, lower local SLP over EA, and a strengthened western Pacific subtropical high. These factors are controlling circulation features for a positive SFRI. A physical-empirical model was established to predict SFRI by combining the three predictors. Hindcasting was performed for the 1979-2016 period, which showed a hindcast prediction skill that was, unexpectedly, substantially higher than that of a four-dynamical models’ ensemble prediction for the 1979-2010 period(0.72 versus 0.47). Note that ASI variation is a new predictor compared with signals originating from the tropics to mid-latitudes. The long-lead hindcast skill was notably lower without the ASI signals included, implying the high practical value of ASI variation in terms of long-lead seasonal prediction of MJ EA rainfall. 展开更多
关键词 East Asia SUBTROPICAL FRONTAL rainfall long-lead seasonal prediction Arctic sea ice Physical-empirical model
下载PDF
Seasonal Prediction for May Rainfall over Southern China Based on the NCEP CFSv2 被引量:3
20
作者 LI Chan-zhu YANG Song +2 位作者 MO Wei-qiang ZHANG Jin-mei WEI Wei 《Journal of Tropical Meteorology》 SCIE 2022年第1期29-44,共16页
In this study,we assess the prediction for May rainfall over southern China(SC)by using the NCEP CFSv2 outputs.Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations.... In this study,we assess the prediction for May rainfall over southern China(SC)by using the NCEP CFSv2 outputs.Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations.However,the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations.In observation,the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northeastern China,respectively,with a low-pressure convergence in between.In the CFSv2,however,the anomalous circulations exhibit the patterns in response to the El Ni?o-Southern Oscillation(ENSO),demonstrating that the model overestimates the relationship between May SC rainfall and ENSO.Because of the onset of the South China Sea monsoon,the atmospheric circulation in May over SC is more complex,so the prediction for May SC rainfall is more challenging.In this study,we establish a dynamic-statistical forecast model for May SC rainfall based on the relationship between the interannual variation of rainfall and large-scale ocean-atmosphere variables in the CFSv2.The sea surface temperature anomalies(SSTAs)in the northeastern Pacific and the centraleastern equatorial Pacific,and the 500-h Pa geopotential height anomalies over western Siberia in previous April,which exert great influence on the SC rainfall in May,are chosen as predictors.Furthermore,multiple linear regression is employed between the predictors obtained from the CFSv2 and observed May SC rainfall.Both cross validation and independent test show that the hybrid model significantly improve the model’s skill in predicting the interannual variation of May SC rainfall by two months in advance. 展开更多
关键词 rainfall MAY southern China NCEP CFSv2 prediction
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部