A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ...A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis.展开更多
Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platf...Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platform and the process level of the offshore industry.Currently,qualitymanagement remains in the era of primary information,and there is a lack of effective tracking and recording of welding quality data.When welding defects are encountered,it is difficult to rapidly and accurately determine the root cause of the problem from various complexities and scattered quality data.In this paper,a composite welding quality traceability model for offshore platform block construction process is proposed,it contains the quality early-warning method based on long short-term memory and quality data backtracking query optimization algorithm.By fulfilling the training of the early-warning model and the implementation of the query optimization algorithm,the quality traceability model has the ability to assist enterprises in realizing the rapid identification and positioning of quality problems.Furthermore,the model and the quality traceability algorithm are checked by cases in actual working conditions.Verification analyses suggest that the proposed early-warningmodel for welding quality and the algorithmfor optimizing backtracking requests are effective and can be applied to the actual construction process.展开更多
We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during ...We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .展开更多
Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dis...Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dispersed Ag nanocatalysts,i.e.,AgOx clusters,supported on alumina,silica,and titania,can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature.The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles.The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles.This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts,which should be carefully considered in liquid-solid interface catalytic reactions such as electrocatalysis,environmental catalysis,and organic synthesis in liquid phase.展开更多
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ...Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.展开更多
The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr...The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr-8 wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-pointphase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy(CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.展开更多
Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can ex...Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can extract the potent time-frequency-domain characteristics of signals;however,the performance of conventional characteristics-based classification needs to be improved.Widely used deep learning algorithms(e.g.,convolutional neural networks(CNNs))can conduct classification by extracting high-dimensional data features,with outstanding performance.Hence,combining the advantages of signal processing and deep-learning algorithms can significantly enhance vibration recognition performance.A novel vibration recognition method based on signal processing and deep neural networks is proposed herein.First,environmental vibration signals are collected;then,signal processing is conducted to obtain the coefficient matrices of the time-frequency-domain characteristics using three typical algorithms:the wavelet transform,Hilbert-Huang transform,and Mel frequency cepstral coefficient extraction method.Subsequently,CNNs,long short-term memory(LSTM)networks,and combined deep CNN-LSTM networks are trained for vibration recognition,according to the time-frequencydomain characteristics.Finally,the performance of the trained deep neural networks is evaluated and validated.The results confirm the effectiveness of the proposed vibration recognition method combining signal preprocessing and deep learning.展开更多
More and more attention is paid to listening comprehension and learner factors nowadays, but less attention is paid to the effect of short-term memory. By analyzing the function and effect of short-term memory in the ...More and more attention is paid to listening comprehension and learner factors nowadays, but less attention is paid to the effect of short-term memory. By analyzing the function and effect of short-term memory in the process of information in the mind, this essay points out that short-term memory plays a vital role in listening comprehension, and puts forward three most effective ways to improve short-term memory retention.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
文摘A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis.
基金funded by Ministry of Industry and Information Technology of the People’s Republic of China[Grant No.2018473].
文摘Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platform and the process level of the offshore industry.Currently,qualitymanagement remains in the era of primary information,and there is a lack of effective tracking and recording of welding quality data.When welding defects are encountered,it is difficult to rapidly and accurately determine the root cause of the problem from various complexities and scattered quality data.In this paper,a composite welding quality traceability model for offshore platform block construction process is proposed,it contains the quality early-warning method based on long short-term memory and quality data backtracking query optimization algorithm.By fulfilling the training of the early-warning model and the implementation of the query optimization algorithm,the quality traceability model has the ability to assist enterprises in realizing the rapid identification and positioning of quality problems.Furthermore,the model and the quality traceability algorithm are checked by cases in actual working conditions.Verification analyses suggest that the proposed early-warningmodel for welding quality and the algorithmfor optimizing backtracking requests are effective and can be applied to the actual construction process.
文摘We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .
基金National Key Research and Development Program of China(Nos.2021YFA1502800,2022YFA1504800,and 2022YFA1504500)the National Natural Science Foundation of China(Nos.21825203,22288201,22332006,and 22321002)+2 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0600300)the Fundamental Research Funds for the Central Universities(No.20720220009)Photon Science Center for Carbon Neutrality。
文摘Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dispersed Ag nanocatalysts,i.e.,AgOx clusters,supported on alumina,silica,and titania,can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature.The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles.The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles.This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts,which should be carefully considered in liquid-solid interface catalytic reactions such as electrocatalysis,environmental catalysis,and organic synthesis in liquid phase.
基金supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.
基金financially supported by the National Science Foundation for Young Scientists of China(No.5170402)the China Postdoctoral Fund(No.2018M630071)+1 种基金the Fundamental Research Funds for the Central Universities(No.RF-TP-19-030A2)the Joint Funds of the National Natural Science Foundation of China(No.U1560203)
文摘The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr-8 wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-pointphase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy(CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.
文摘Effective vibration recognition can improve the performance of vibration control and structural damage detection and is in high demand for signal processing and advanced classification.Signal-processing methods can extract the potent time-frequency-domain characteristics of signals;however,the performance of conventional characteristics-based classification needs to be improved.Widely used deep learning algorithms(e.g.,convolutional neural networks(CNNs))can conduct classification by extracting high-dimensional data features,with outstanding performance.Hence,combining the advantages of signal processing and deep-learning algorithms can significantly enhance vibration recognition performance.A novel vibration recognition method based on signal processing and deep neural networks is proposed herein.First,environmental vibration signals are collected;then,signal processing is conducted to obtain the coefficient matrices of the time-frequency-domain characteristics using three typical algorithms:the wavelet transform,Hilbert-Huang transform,and Mel frequency cepstral coefficient extraction method.Subsequently,CNNs,long short-term memory(LSTM)networks,and combined deep CNN-LSTM networks are trained for vibration recognition,according to the time-frequencydomain characteristics.Finally,the performance of the trained deep neural networks is evaluated and validated.The results confirm the effectiveness of the proposed vibration recognition method combining signal preprocessing and deep learning.
文摘More and more attention is paid to listening comprehension and learner factors nowadays, but less attention is paid to the effect of short-term memory. By analyzing the function and effect of short-term memory in the process of information in the mind, this essay points out that short-term memory plays a vital role in listening comprehension, and puts forward three most effective ways to improve short-term memory retention.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.