Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da...Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.展开更多
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ...The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.展开更多
Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines,company reports,and a mix of daily stock fundamentals,but few studies achieved excellent results.T...Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines,company reports,and a mix of daily stock fundamentals,but few studies achieved excellent results.This study uses a convolutional neural network(CNN)to predict stock prices by considering a great amount of data,consisting of financial news headlines.We call our model N-CNN to distinguish it from a CNN.The main concept is to narrow the diversity of specific stock prices as they are impacted by news headlines,then horizontally expand the news headline data to a higher level for increased reliability.This model solves the problem that the number of news stories produced by a single stock does not meet the standard of previous research.In addition,we then use the number of news headlines for every stock on the China stock exchange as input to predict the probability of the highest next day stock price fluctuations.In the second half of this paper,we compare a traditional Long Short-Term Memory(LSTM)model for daily technical indicators with an LSTM model compensated by the N-CNN model.Experiments show that the final result obtained by the compensation formula can further reduce the root-mean-square error of LSTM.展开更多
Stock market forecasting is an important research area,especially for better business decision making.Efficient stock predictions continue to be significant for business intelligence.Traditional short-term stock marke...Stock market forecasting is an important research area,especially for better business decision making.Efficient stock predictions continue to be significant for business intelligence.Traditional short-term stock market forecasting is usually based on historical market data analysis such as stock prices,moving averages,or daily returns.However,major events’news also contains significant information regarding market drivers.An effective stock market forecasting system helps investors and analysts to use supportive information regarding the future direction of the stock market.This research proposes an efficient model for stock market prediction.The current proposed study explores the positive and negative effects of coronavirus events on major stock sectors like the airline,pharmaceutical,e-commerce,technology,and hospitality.We use the Twitter dataset for calculating the coronavirus sentiment with a Long Short-Term Memory(LSTM)model to improve stock prediction.The LSTM has the advantage of analyzing relationship between time-series data through memory functions.The performance of the system is evaluated by Mean Absolute Error(MAE),Mean Squared Error(MSE),and Root Mean Squared Error(RMSE).The results show that performance improves by using coronavirus event sentiments along with the LSTM prediction model.展开更多
In view of the breakthrough progress of the depth learning method in image and other fields,this paper attempts to introduce the depth learning method into stock price forecasting to provide investors with reasonable ...In view of the breakthrough progress of the depth learning method in image and other fields,this paper attempts to introduce the depth learning method into stock price forecasting to provide investors with reasonable investment suggestions.This paper proposes a stock prediction hybrid model named ISI-CNN-LSTM considering investor sentiment based on the combination of long short-term memory(LSTM) and convolutional neural network(CNN).The model adopts an end-to-end network structure,using LSTM to extract the temporal features in the data and CNN to mine the deep features in the data can effectively improve the prediction ability of the model by increasing investor sentiment in the network structure.The empirical part makes a comparative experimental analysis based on Shanghai stock index in China.By comparing the experimental prediction results and evaluation indicators,it verifies the prediction effectiveness and feasibility of ISI-CNN-LSTM network model.展开更多
The unilateral disposition of stock rights' voting rights detracts from the welfare of the other shareholders. Contractual arrangements restricting or prohibiting the transfer of stock rights under the capital majori...The unilateral disposition of stock rights' voting rights detracts from the welfare of the other shareholders. Contractual arrangements restricting or prohibiting the transfer of stock rights under the capital majority rule may infringe upon shareholders' fight of withdrawal, further weakening stock market constraints on senior management and indirectly raising the agency cost of management abuse of power for private ends. In creating a legal structure for stock rights transfer, we need to find an appropriate balance between freedom of contract, capital majority rule and reduction of agency costs. Judges should determine that the transfer of voting rights is invalid in order to ensure that voting rights match residual claim rights and maintain the constraints on senior management represented by shareholder voting rights. The general prohibition of stock fights transfer in the articles of association blocks shareholders' right of withdrawal; this is not conducive to restraining potential abuses of power on the part of senior management and should be made invalid. Judges must differentiate between long- and short-term contracts and the initial and revised clauses of the articles of association in order to distinguish between the efficacy of different arrangements limiting transfer of stock rights as laid down in the articles of association.展开更多
文摘Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
文摘The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.
基金This work was supported by the Natural Science Foundation of China(61572160).
文摘Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines,company reports,and a mix of daily stock fundamentals,but few studies achieved excellent results.This study uses a convolutional neural network(CNN)to predict stock prices by considering a great amount of data,consisting of financial news headlines.We call our model N-CNN to distinguish it from a CNN.The main concept is to narrow the diversity of specific stock prices as they are impacted by news headlines,then horizontally expand the news headline data to a higher level for increased reliability.This model solves the problem that the number of news stories produced by a single stock does not meet the standard of previous research.In addition,we then use the number of news headlines for every stock on the China stock exchange as input to predict the probability of the highest next day stock price fluctuations.In the second half of this paper,we compare a traditional Long Short-Term Memory(LSTM)model for daily technical indicators with an LSTM model compensated by the N-CNN model.Experiments show that the final result obtained by the compensation formula can further reduce the root-mean-square error of LSTM.
基金supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Stock market forecasting is an important research area,especially for better business decision making.Efficient stock predictions continue to be significant for business intelligence.Traditional short-term stock market forecasting is usually based on historical market data analysis such as stock prices,moving averages,or daily returns.However,major events’news also contains significant information regarding market drivers.An effective stock market forecasting system helps investors and analysts to use supportive information regarding the future direction of the stock market.This research proposes an efficient model for stock market prediction.The current proposed study explores the positive and negative effects of coronavirus events on major stock sectors like the airline,pharmaceutical,e-commerce,technology,and hospitality.We use the Twitter dataset for calculating the coronavirus sentiment with a Long Short-Term Memory(LSTM)model to improve stock prediction.The LSTM has the advantage of analyzing relationship between time-series data through memory functions.The performance of the system is evaluated by Mean Absolute Error(MAE),Mean Squared Error(MSE),and Root Mean Squared Error(RMSE).The results show that performance improves by using coronavirus event sentiments along with the LSTM prediction model.
基金Supported by Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20200103)Doctoral Research Start-Up Fund of Anhui University of Finance&Economics(85051)。
文摘In view of the breakthrough progress of the depth learning method in image and other fields,this paper attempts to introduce the depth learning method into stock price forecasting to provide investors with reasonable investment suggestions.This paper proposes a stock prediction hybrid model named ISI-CNN-LSTM considering investor sentiment based on the combination of long short-term memory(LSTM) and convolutional neural network(CNN).The model adopts an end-to-end network structure,using LSTM to extract the temporal features in the data and CNN to mine the deep features in the data can effectively improve the prediction ability of the model by increasing investor sentiment in the network structure.The empirical part makes a comparative experimental analysis based on Shanghai stock index in China.By comparing the experimental prediction results and evaluation indicators,it verifies the prediction effectiveness and feasibility of ISI-CNN-LSTM network model.
基金an initial product(in Economic Law)of the Discipline Construction(Legal Science)Program in Shanghai universities
文摘The unilateral disposition of stock rights' voting rights detracts from the welfare of the other shareholders. Contractual arrangements restricting or prohibiting the transfer of stock rights under the capital majority rule may infringe upon shareholders' fight of withdrawal, further weakening stock market constraints on senior management and indirectly raising the agency cost of management abuse of power for private ends. In creating a legal structure for stock rights transfer, we need to find an appropriate balance between freedom of contract, capital majority rule and reduction of agency costs. Judges should determine that the transfer of voting rights is invalid in order to ensure that voting rights match residual claim rights and maintain the constraints on senior management represented by shareholder voting rights. The general prohibition of stock fights transfer in the articles of association blocks shareholders' right of withdrawal; this is not conducive to restraining potential abuses of power on the part of senior management and should be made invalid. Judges must differentiate between long- and short-term contracts and the initial and revised clauses of the articles of association in order to distinguish between the efficacy of different arrangements limiting transfer of stock rights as laid down in the articles of association.