期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:2
1
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 DATA Mining Time Series FUNDAMENTAL DATA DATA Frequency Application DOMAIN short-term stocks PREDICTION
下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
2
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 Autoregressive integrated moving average(ARIMA)model Long short-term Memory(LSTM)network Forecasting stock market
下载PDF
Improving Stock Price Forecasting Using a Large Volume of News Headline Text 被引量:4
3
作者 Daxing Zhang Erguan Cai 《Computers, Materials & Continua》 SCIE EI 2021年第12期3931-3943,共13页
Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines,company reports,and a mix of daily stock fundamentals,but few studies achieved excellent results.T... Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines,company reports,and a mix of daily stock fundamentals,but few studies achieved excellent results.This study uses a convolutional neural network(CNN)to predict stock prices by considering a great amount of data,consisting of financial news headlines.We call our model N-CNN to distinguish it from a CNN.The main concept is to narrow the diversity of specific stock prices as they are impacted by news headlines,then horizontally expand the news headline data to a higher level for increased reliability.This model solves the problem that the number of news stories produced by a single stock does not meet the standard of previous research.In addition,we then use the number of news headlines for every stock on the China stock exchange as input to predict the probability of the highest next day stock price fluctuations.In the second half of this paper,we compare a traditional Long Short-Term Memory(LSTM)model for daily technical indicators with an LSTM model compensated by the N-CNN model.Experiments show that the final result obtained by the compensation formula can further reduce the root-mean-square error of LSTM. 展开更多
关键词 Deep learning recurrent neural network convolutional neural network long short-term memory stocks forecasting
下载PDF
An LSTM Based Forecasting for Major Stock Sectors Using COVID Sentiment 被引量:3
4
作者 Ayesha Jabeen Sitara Afzal +4 位作者 Muazzam Maqsood Irfan Mehmood Sadaf Yasmin Muhammad Tabish Niaz Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第4期1191-1206,共16页
Stock market forecasting is an important research area,especially for better business decision making.Efficient stock predictions continue to be significant for business intelligence.Traditional short-term stock marke... Stock market forecasting is an important research area,especially for better business decision making.Efficient stock predictions continue to be significant for business intelligence.Traditional short-term stock market forecasting is usually based on historical market data analysis such as stock prices,moving averages,or daily returns.However,major events’news also contains significant information regarding market drivers.An effective stock market forecasting system helps investors and analysts to use supportive information regarding the future direction of the stock market.This research proposes an efficient model for stock market prediction.The current proposed study explores the positive and negative effects of coronavirus events on major stock sectors like the airline,pharmaceutical,e-commerce,technology,and hospitality.We use the Twitter dataset for calculating the coronavirus sentiment with a Long Short-Term Memory(LSTM)model to improve stock prediction.The LSTM has the advantage of analyzing relationship between time-series data through memory functions.The performance of the system is evaluated by Mean Absolute Error(MAE),Mean Squared Error(MSE),and Root Mean Squared Error(RMSE).The results show that performance improves by using coronavirus event sentiments along with the LSTM prediction model. 展开更多
关键词 Business intelligence decision making stock prediction long short-term memory COVID-19 event sentiment
下载PDF
突发事件应急指挥系统预案的研究与应用 被引量:10
5
作者 李磊 王玉玫 《计算机工程与设计》 CSCD 北大核心 2009年第16期3863-3867,共5页
在应用和分析各种应急预案的基础上,提出了一个概念化的应急预案模型。基于应急预案模型,展开了预案处理工具的开发工作,首先从单个应急预案模型的建立到预案库的生成与管理,使得对各类应急预案的管理变得相对直观、简单,其次针对单个... 在应用和分析各种应急预案的基础上,提出了一个概念化的应急预案模型。基于应急预案模型,展开了预案处理工具的开发工作,首先从单个应急预案模型的建立到预案库的生成与管理,使得对各类应急预案的管理变得相对直观、简单,其次针对单个应急预案从生成应急预案、生成应急方案、推演应急方案、修正应急方案直到启动应急方案,形成了一个研究、开发、应用并逐步修正应急预案处理过程的闭环。 展开更多
关键词 预案模型 预案库 生成方案 推演方案 启动方案
下载PDF
R&D投入中介作用下高管股权激励对企业成长的影响 被引量:3
6
作者 李小青 宋淑利 千春玉 《企业经济》 北大核心 2015年第3期31-35,共5页
以2010—2013年间236家河北省科技创业企业为研究样本,基于R&D投入中介作用的视角,研究了高管股权激励对企业成长的影响。实证研究结果表明:科技创业企业高管股权激励对R&D投入具有显著的正向影响;R&D投入对企业成长具有显著的... 以2010—2013年间236家河北省科技创业企业为研究样本,基于R&D投入中介作用的视角,研究了高管股权激励对企业成长的影响。实证研究结果表明:科技创业企业高管股权激励对R&D投入具有显著的正向影响;R&D投入对企业成长具有显著的正向影响;高管股权激励对企业成长具有积极的促进作用,该作用部分是通过R&D投入这一中介变量来传导的。本研究丰富了高管激励契约、R&D投入与企业成长关系的经验研究成果,同时能够为河北省科技创业企业通过增加R&D投入来提升企业技术创新水平、促进企业健康成长提供参考,为促进全社会研发投入快速增长提供借鉴。 展开更多
关键词 科技创业企业 高管股权激励 R&D投入 企业成长
下载PDF
股票短线启动时机选择及其买卖点的确定探讨 被引量:1
7
作者 冷松 俞雪华 《扬州教育学院学报》 2009年第4期34-37,共4页
成功的短线交易带来较高的资金效率和可观的短线差价。为给短线交易偏好者提供相应参考,本文对股票短线启动前的现象和规律进行了分析,提出了短线启动前后买卖点的合理确定以及短线交易的一些经验做法。
关键词 股票短线启动 买卖点 短线交易
下载PDF
高校大学生理财教育刍议 被引量:5
8
作者 李建英 《河北经贸大学学报(综合版)》 2013年第3期107-109,共3页
当前,理财教育已经成为我国高校素质教育的一个重要组成部分,调查显示:在校大学生对金融知识有需求的占到半数以上,尤其是对个人理财类(证券投资等)金融知识需求比例较大。当前大部分学校尚未开设理财教育等相关课程,主要原因是没有把... 当前,理财教育已经成为我国高校素质教育的一个重要组成部分,调查显示:在校大学生对金融知识有需求的占到半数以上,尤其是对个人理财类(证券投资等)金融知识需求比例较大。当前大部分学校尚未开设理财教育等相关课程,主要原因是没有把大学生理财素质培养放到应有位置。大学时代是理财的起步阶段,也是学习理财的黄金时期,理财教育对于社会发展和大学生个人发展都具有深远的现实意义。 展开更多
关键词 大学生 金融知识 理财教育 金融产品 股票债券 创业贷款 助学贷款 理财实践
下载PDF
“零”的追求——企业财务管理新理念 被引量:5
9
作者 刘建青 《兰州商学院学报》 2003年第1期90-93,共4页
日益激烈的市场竞争和经济全球化浪潮使得传统财务管理面临着巨大的挑战。面对这种新的经济环境 ,企业财务管理必须进行相应的变革 ,最关键的是财务管理理念的全面更新。本文仅就“零”的追求 ,这一企业财务管理的新理念进行探讨。
关键词 企业 财务管理 管理理念 “零存货”
下载PDF
高新技术企业创业期薪酬激励研究 被引量:3
10
作者 王九群 王宝森 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第3期403-405,共3页
为了实现财富最大化,创业期高新技术企业所有者需要给予高级管理人员和核心技术人员必要的薪酬激励。建立一个理论模型,研究存在经理人员的机会成本和高新技术企业创业期的替换成本时,所有者如何确定最优的报酬——业绩敏感系数。 股权... 为了实现财富最大化,创业期高新技术企业所有者需要给予高级管理人员和核心技术人员必要的薪酬激励。建立一个理论模型,研究存在经理人员的机会成本和高新技术企业创业期的替换成本时,所有者如何确定最优的报酬——业绩敏感系数。 股权激励是高新技术企业创业期主要的薪酬激励手段,还对我国现阶段高新技术企业创业期股权激励方案的设计做了论述。 展开更多
关键词 高新技术企业创业期 报酬——业绩敏感系数 股权激励
下载PDF
炼钢厂连铸机的开浇时间决策优化模型 被引量:2
11
作者 龚永民 郑忠 +1 位作者 龙建宇 高小强 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期203-207,共5页
针对炼钢厂连铸机开浇时是否连浇以及开浇时间确定等问题,从钢厂生产线上待加工的铁水/钢水金属资源平衡的角度,建立了以连铸生产总效益最大为目标函数的连铸机开浇决策的混合整数规划模型,并用基于MATLAB软件的YALMIP优化工具进行模型... 针对炼钢厂连铸机开浇时是否连浇以及开浇时间确定等问题,从钢厂生产线上待加工的铁水/钢水金属资源平衡的角度,建立了以连铸生产总效益最大为目标函数的连铸机开浇决策的混合整数规划模型,并用基于MATLAB软件的YALMIP优化工具进行模型的求解.针对某钢厂的实际情况进行模型的应用测试,结果表明:模型可以优化决策连铸机各浇次的开浇时间,有助于编制合理的炼钢厂生产调度作业计划,稳定各班次之间的生产条件,降低生产线上的积压金属量,为炼钢厂连铸机的有序开浇提供了技术手段. 展开更多
关键词 连铸机 开浇决策 优化模型 安全库存 混合整数规划
下载PDF
机车车辆车外噪声限值对比分析
12
作者 蔡延年 李忞 倪忠强 《铁道技术监督》 2023年第2期13-18,共6页
为明确不同类型机车车辆的车外噪声控制目标,分析总结国际铁路联盟标准、欧盟铁路互通性技术规范,以及我国铁道和城轨行业标准,对不同条件下车外噪声限值的要求。对比不同车外辐射噪声标准的限值情况,分析起动、静置与通过3种运用状态... 为明确不同类型机车车辆的车外噪声控制目标,分析总结国际铁路联盟标准、欧盟铁路互通性技术规范,以及我国铁道和城轨行业标准,对不同条件下车外噪声限值的要求。对比不同车外辐射噪声标准的限值情况,分析起动、静置与通过3种运用状态下辐射噪声的具体要求,并有针对性地提出相关建议,为提高我国机车车辆装备辐射噪声控制水平提供参考。 展开更多
关键词 机车车辆 车外噪声 起动噪声 静置噪声 通过噪声 技术标准 技术规范
下载PDF
Prediction of Shanghai Stock Index Based on Investor Sentiment and CNN-LSTM Model 被引量:2
13
作者 Yi SUN Qingsong SUN Shan ZHU 《Journal of Systems Science and Information》 CSCD 2022年第6期620-632,共13页
In view of the breakthrough progress of the depth learning method in image and other fields,this paper attempts to introduce the depth learning method into stock price forecasting to provide investors with reasonable ... In view of the breakthrough progress of the depth learning method in image and other fields,this paper attempts to introduce the depth learning method into stock price forecasting to provide investors with reasonable investment suggestions.This paper proposes a stock prediction hybrid model named ISI-CNN-LSTM considering investor sentiment based on the combination of long short-term memory(LSTM) and convolutional neural network(CNN).The model adopts an end-to-end network structure,using LSTM to extract the temporal features in the data and CNN to mine the deep features in the data can effectively improve the prediction ability of the model by increasing investor sentiment in the network structure.The empirical part makes a comparative experimental analysis based on Shanghai stock index in China.By comparing the experimental prediction results and evaluation indicators,it verifies the prediction effectiveness and feasibility of ISI-CNN-LSTM network model. 展开更多
关键词 convolution neural network long short-term memory investor sentiment stock price forecasting
原文传递
A Legal Structure for Limiting the Agency Cost of Stock Rights Transfer
14
作者 罗培新 Hao Jinchuan 《Social Sciences in China》 2014年第2期26-43,共18页
The unilateral disposition of stock rights' voting rights detracts from the welfare of the other shareholders. Contractual arrangements restricting or prohibiting the transfer of stock rights under the capital majori... The unilateral disposition of stock rights' voting rights detracts from the welfare of the other shareholders. Contractual arrangements restricting or prohibiting the transfer of stock rights under the capital majority rule may infringe upon shareholders' fight of withdrawal, further weakening stock market constraints on senior management and indirectly raising the agency cost of management abuse of power for private ends. In creating a legal structure for stock rights transfer, we need to find an appropriate balance between freedom of contract, capital majority rule and reduction of agency costs. Judges should determine that the transfer of voting rights is invalid in order to ensure that voting rights match residual claim rights and maintain the constraints on senior management represented by shareholder voting rights. The general prohibition of stock fights transfer in the articles of association blocks shareholders' right of withdrawal; this is not conducive to restraining potential abuses of power on the part of senior management and should be made invalid. Judges must differentiate between long- and short-term contracts and the initial and revised clauses of the articles of association in order to distinguish between the efficacy of different arrangements limiting transfer of stock rights as laid down in the articles of association. 展开更多
关键词 transfer of stock rights agency cost long-term and short-term contracts legal structure
原文传递
1980~1991年中国证券市场的复苏与起步 被引量:1
15
作者 王年咏 《当代中国史研究》 CSSCI 北大核心 2007年第3期87-94,共8页
1980~1991年中国证券市场的复苏和起步,得益于理论认识的突破、市场导向改革的开启和社会融资结构的第一次变迁、金融体制改革和市场演进规律的推动。在12年艰辛曲折的演进历程中,证券发行市场初步形成,证券流通构架基本成型,市场监管... 1980~1991年中国证券市场的复苏和起步,得益于理论认识的突破、市场导向改革的开启和社会融资结构的第一次变迁、金融体制改革和市场演进规律的推动。在12年艰辛曲折的演进历程中,证券发行市场初步形成,证券流通构架基本成型,市场监管框架雏形初现。证券市场发挥了筹资、“反哺”、示范和导向等作用,但也存在结构不均衡、运作不规范、制度安排不健全等问题。这些成就、问题与缺陷,成为证券市场后续成长与突破的历史起点与逻辑前提。 展开更多
关键词 中国证券市场 复苏与起步 结构变迁 历史考察
原文传递
mRNA疫苗起始材料、原辅料和原液技术评估要点的研究与分析
16
作者 孙巍 佟乐 +1 位作者 杨亚莉 杨振 《药物分析杂志》 CAS CSCD 北大核心 2022年第10期1850-1855,共6页
基于mRNA疫苗生产技术特点,对照新近发布的《WHO预防传染病mRNA疫苗质量、安全及有效性评价法规考虑》,梳理评估现阶段预防传染病mRNA疫苗起始材料、原辅料和原液质量控制具体考虑要点,为我国预防传染病mRNA疫苗的研究和质控提供参考。
关键词 世界卫生组织 mRNA疫苗 起始材料 原辅料 原液 质量控制 技术评估
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部