Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi...To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne...Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.展开更多
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e...The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.展开更多
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ...An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an...To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.展开更多
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak...Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε ...Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters.展开更多
In this paper, a fuzzy forecasting system is designed and implemented by which an original forecasting model can be obtained by data learning. The model parameters can then be adaptively optimized through gradient inf...In this paper, a fuzzy forecasting system is designed and implemented by which an original forecasting model can be obtained by data learning. The model parameters can then be adaptively optimized through gradient information of real-time data. Thus, the system is of extinguished adaptive feature and self-learning capability. Afterwards, experimental research efforts are put forward to carry out electric power load forecasting. Experimental results demonstrate the satisfactory performances of the intelligent forecasting system.展开更多
In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has...In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has become a complex challenge to accurately forecast their electricity demands through traditional forecasting methods.This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering,deep learning,and transfer learning technologies to address this issue.To begin,this paper leverages the domain adversarial transfer network.It employs limited data as target domain data and more abundant data as source domain data,thus enabling the utilization of source do-main insights for the forecasting task of the target domain.Moreover,a K-shape clustering method is proposed,which effectively identifies source domain data that align optimally with the target domain,and enhances the forecasting accuracy.Subsequently,a composite architecture is devised,amalgamating attention mechanism,long short-term memory network,and seq2seq network.This composite structure is integrated into the domain adversarial transfer network,bolstering the performance of feature extractor and refining the forecasting capabilities.An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically.In the case study,the relative mean square error of the proposed method is within 30 MW,and the mean absolute percentage error is within 2%.A signifi-cant improvement in accuracy,compared with other comparative experimental results,underscores the reliability of the proposed method.The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior forecasting results compared with prevailing mainstream forecast-ing methods.展开更多
Building-level load forecasting has become essential with the support of fine-grained data collected by widely deployed smart meters.It acts as a basis for arranging distributed energy resources,implementing demand re...Building-level load forecasting has become essential with the support of fine-grained data collected by widely deployed smart meters.It acts as a basis for arranging distributed energy resources,implementing demand response,etc.Compared to aggre-gated-level load,the electric load of an individual building is more stochastic and thus spawns many probabilistic forecasting meth-ods.Many of them resort to artificial neural networks(ANN)to build forecasting models.However,a well-designed forecasting model for one building may not be suitable for others,and manually designing and tuning optimal forecasting models for various buildings are tedious and time-consuming.This paper proposes an adaptive probabilistic load forecasting model to automatically generate high-performance NN structures for different buildings and produce quantile forecasts for future loads.Specifically,we cascade the long short term memory(LSTM)layer with the adjusted Differential ArchiTecture Search(DARTS)cell and use the pinball loss function to guide the model during the improved model fitting process.A case study on an open dataset shows that our proposed model has superior performance and adaptivity over the state-of-the-art static neural network model.Besides,the improved fitting process of DARTS is proved to be more time-efficient than the original one.展开更多
With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties i...With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties in short-term load forecasting area.To overcome this issue,this paper proposes a new short-term load forecasting framework based on big data technologies.First,a cluster analysis is performed to classify daily load patterns for individual loads using smart meter data.Next,an association analysis is used to determine critical influential factors.This is followed by the application of a decision tree to establish classification rules.Then,appropriate forecasting models are chosen for different load patterns.Finally,the forecasted total system load is obtained through an aggregation of an individual load’s forecasting results.Case studies using real load data show that the proposed new framework can guarantee the accuracy of short-term load forecasting within required limits.展开更多
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity...Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.展开更多
This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the...This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the Bat algorithm as well as the Kalman filtering process(KF-BA-SVM).The subjective weight is presented as a new theory and is applied to capture the inherent correlation effectively among hourly loads.Based on the proposed objective weights and subjective weights,the fuzzy combination weights theory(FCW)-a new similar day selection theory is presented,which improves the accuracy of the similar day selection,and correspondingly,makes the original data for EMD processing decrease dramatically.BA is introduced to optimize parameters of the SVM model for further improving the forecasting accuracy.Using the decomposed load series via empirical model decomposition(EMD)as inputs to SVM and further correcting the output of SVM via KF,a hybrid FCW-EMD and KF-BA-SVM short-term load forecasting method is established.Numerical case studies on the load forecasting of a transformer substation in south China show that the proposed hybrid forecasting model outperforms other forecasting methods and effectively improves the prediction accuracy.展开更多
Electric load forecasting is an efficient tool for system planning, and consequently, building sustainable power systems. However, achieving desirable performance is difficult owing to the irregular, nonstationary, no...Electric load forecasting is an efficient tool for system planning, and consequently, building sustainable power systems. However, achieving desirable performance is difficult owing to the irregular, nonstationary, nonlinear, and noisy nature of the observed data. Therefore, a new attention-based encoderdecoder model is proposed, called empirical mode decomposition-attention-long short-term memory(EMD-Att-LSTM).EMD is a data-driven technique used for the decomposition of complex series into subsequent simpler series. It explores the inherent properties of data to obtain the components such as trend and seasonality. Neural network architecture driven by deep learning uses the idea of a fine-grained attention mechanism, that is, considering the hidden state instead of the hidden state vectors, which can help reflect the significance and contributions of each hidden state dimension. In addition, it is useful for locating and concentrating the relevant temporary data,leading to a distinctly interpretable network. To evaluate the proposed model, we use the repository dataset of Australian energy market operator(AEMO). The proposed architecture provides superior empirical results compared with other advanced models. It is explored using the indices of root mean square error(RMSE) and mean absolute percentage error(MAPE).展开更多
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
文摘To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
基金supported by the Major Project of Basic and Applied Research in Guangdong Universities (2017WZDXM012)。
文摘Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.
文摘The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.
文摘An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
基金supported by National Natural Science Foundation of China(NSFC)(62103126).
文摘To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.
文摘Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
基金The research was supported by the Science & Research Foundation of East China Jiaotong University (No.23)
文摘Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters.
文摘In this paper, a fuzzy forecasting system is designed and implemented by which an original forecasting model can be obtained by data learning. The model parameters can then be adaptively optimized through gradient information of real-time data. Thus, the system is of extinguished adaptive feature and self-learning capability. Afterwards, experimental research efforts are put forward to carry out electric power load forecasting. Experimental results demonstrate the satisfactory performances of the intelligent forecasting system.
基金supported by the National Natural Science Foundation of China(No.52177087)Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515250006).
文摘In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has become a complex challenge to accurately forecast their electricity demands through traditional forecasting methods.This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering,deep learning,and transfer learning technologies to address this issue.To begin,this paper leverages the domain adversarial transfer network.It employs limited data as target domain data and more abundant data as source domain data,thus enabling the utilization of source do-main insights for the forecasting task of the target domain.Moreover,a K-shape clustering method is proposed,which effectively identifies source domain data that align optimally with the target domain,and enhances the forecasting accuracy.Subsequently,a composite architecture is devised,amalgamating attention mechanism,long short-term memory network,and seq2seq network.This composite structure is integrated into the domain adversarial transfer network,bolstering the performance of feature extractor and refining the forecasting capabilities.An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically.In the case study,the relative mean square error of the proposed method is within 30 MW,and the mean absolute percentage error is within 2%.A signifi-cant improvement in accuracy,compared with other comparative experimental results,underscores the reliability of the proposed method.The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior forecasting results compared with prevailing mainstream forecast-ing methods.
基金supported in part by the Seed Fund for Basic Research for New Staff of The University of Hong Kong(202107185032)and in part by the Alibaba Innovative Research programme.
文摘Building-level load forecasting has become essential with the support of fine-grained data collected by widely deployed smart meters.It acts as a basis for arranging distributed energy resources,implementing demand response,etc.Compared to aggre-gated-level load,the electric load of an individual building is more stochastic and thus spawns many probabilistic forecasting meth-ods.Many of them resort to artificial neural networks(ANN)to build forecasting models.However,a well-designed forecasting model for one building may not be suitable for others,and manually designing and tuning optimal forecasting models for various buildings are tedious and time-consuming.This paper proposes an adaptive probabilistic load forecasting model to automatically generate high-performance NN structures for different buildings and produce quantile forecasts for future loads.Specifically,we cascade the long short term memory(LSTM)layer with the adjusted Differential ArchiTecture Search(DARTS)cell and use the pinball loss function to guide the model during the improved model fitting process.A case study on an open dataset shows that our proposed model has superior performance and adaptivity over the state-of-the-art static neural network model.Besides,the improved fitting process of DARTS is proved to be more time-efficient than the original one.
文摘With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties in short-term load forecasting area.To overcome this issue,this paper proposes a new short-term load forecasting framework based on big data technologies.First,a cluster analysis is performed to classify daily load patterns for individual loads using smart meter data.Next,an association analysis is used to determine critical influential factors.This is followed by the application of a decision tree to establish classification rules.Then,appropriate forecasting models are chosen for different load patterns.Finally,the forecasted total system load is obtained through an aggregation of an individual load’s forecasting results.Case studies using real load data show that the proposed new framework can guarantee the accuracy of short-term load forecasting within required limits.
基金supported by the National Key Research and Development Program of China(2017YFB0903300)Research Program of State Grid Corporation of China(SGTYHT/16-JS-198)the National Natural Science Foundation of China(51807134).
文摘Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.
文摘This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the Bat algorithm as well as the Kalman filtering process(KF-BA-SVM).The subjective weight is presented as a new theory and is applied to capture the inherent correlation effectively among hourly loads.Based on the proposed objective weights and subjective weights,the fuzzy combination weights theory(FCW)-a new similar day selection theory is presented,which improves the accuracy of the similar day selection,and correspondingly,makes the original data for EMD processing decrease dramatically.BA is introduced to optimize parameters of the SVM model for further improving the forecasting accuracy.Using the decomposed load series via empirical model decomposition(EMD)as inputs to SVM and further correcting the output of SVM via KF,a hybrid FCW-EMD and KF-BA-SVM short-term load forecasting method is established.Numerical case studies on the load forecasting of a transformer substation in south China show that the proposed hybrid forecasting model outperforms other forecasting methods and effectively improves the prediction accuracy.
文摘Electric load forecasting is an efficient tool for system planning, and consequently, building sustainable power systems. However, achieving desirable performance is difficult owing to the irregular, nonstationary, nonlinear, and noisy nature of the observed data. Therefore, a new attention-based encoderdecoder model is proposed, called empirical mode decomposition-attention-long short-term memory(EMD-Att-LSTM).EMD is a data-driven technique used for the decomposition of complex series into subsequent simpler series. It explores the inherent properties of data to obtain the components such as trend and seasonality. Neural network architecture driven by deep learning uses the idea of a fine-grained attention mechanism, that is, considering the hidden state instead of the hidden state vectors, which can help reflect the significance and contributions of each hidden state dimension. In addition, it is useful for locating and concentrating the relevant temporary data,leading to a distinctly interpretable network. To evaluate the proposed model, we use the repository dataset of Australian energy market operator(AEMO). The proposed architecture provides superior empirical results compared with other advanced models. It is explored using the indices of root mean square error(RMSE) and mean absolute percentage error(MAPE).